LAHLH
- 405
- 2
Hi,
I have the integral:
\int\,\frac{d^4 l}{(2\pi)^4)} \frac{\partial}{\partial l^{\beta}} f_{\alpha}(l)
Now apparently this can be written (using a Wick rotation and converting to a surface integral) as:
i \lim_{l\to\infty}\int\,\frac{\mathrm{d}S_{\beta}}{(2\pi)^4}\,f_{\alpha}(l) where \mathrm{d}S_{\beta}=l^2 l_{\beta} d\Omega is a surface-area element and d\Omega is the differential solid angle in 4d.
Can anyone see how exactly? (if context is needed this in (75.41) of Srednicki's QFT available free online)
I have the integral:
\int\,\frac{d^4 l}{(2\pi)^4)} \frac{\partial}{\partial l^{\beta}} f_{\alpha}(l)
Now apparently this can be written (using a Wick rotation and converting to a surface integral) as:
i \lim_{l\to\infty}\int\,\frac{\mathrm{d}S_{\beta}}{(2\pi)^4}\,f_{\alpha}(l) where \mathrm{d}S_{\beta}=l^2 l_{\beta} d\Omega is a surface-area element and d\Omega is the differential solid angle in 4d.
Can anyone see how exactly? (if context is needed this in (75.41) of Srednicki's QFT available free online)