You need to define (x,y,z) with (r,t,z'):
<br />
x = \frac{r}{2}cos\theta<br />
<br />
y = \frac{r}{3}sin\theta<br />
<br />
z = z'<br />
<br />
\left| J \right| = \begin{vmatrix} \frac{1}{2}cos\theta & -\frac{r}{2}sin\theta & 0 \\ \frac{1}{3}sin\theta & \frac{r}{3}cos\theta & 0 \\ 0 & 0 & 1 \end{vmatrix} = \frac{r}{6}<br />
Noting that using this transformation, r is really equal to \sqrt{4x^2 + 9y^2}, you finally have this integral:
<br />
\int_{r=0}^5 { \int_{\theta=0}^{2 \pi} { \int_{z'=0}^6 { r \frac{r}{6}dz' d\theta dr } } }<br />