How to find a homotopy between two maps?

  • Thread starter kakarotyjn
  • Start date
In summary: I am still not seeing the problem.In summary, the conversation discusses the concept of homotopy between maps and the specific case of homotopy between maps from the unit circle to itself. The first part of the conversation proves that any map which is not homotopic to the identity must have a point where f(x)=-x. The second part of the conversation discusses the idea of homotopy as a continuous movement of a space and provides an example of a failed homotopy. The final part discusses the possible number of homotopy classes of maps from the circle to itself and a suggested homotopy that could potentially work but ultimately does not satisfy the definition of homotopy.
  • #1
kakarotyjn
98
0
1.Let C denote the unit circle in the plane.Suppose f:C->C is a map which is not homotopic to the identity.Prove that f(x)=-x for some point x of C.

2.CY denotes the cone on Y.Show that any two maps f,g:X->CY are homotopic.
 
Physics news on Phys.org
  • #2
1. Define a homotopy from f to the identity like so: draw a line from f(x) to x. This line lies inside the disk the boundary of which is C, so it's not an homotopy in C. But make it so by "projecting" radially the line onto the circle. You can tell immediately that there is a problem with this construction when the line passes through the origin... that is to say, when f(x)=-x for some x! Make this idea precise by writing down the explicit formula for the homotopy described above and showing that the formula is a well defined homotopy iff f(x) is not -x for some x.

2. The cone CY is such that you can take any point on CY and get to any other point of CY by going up the cone and passing through the tip then going back down to the other point.
 
Last edited:
  • #3
Thank you very much quasar987.But I have a question.

In both the two solutions you've presented I find the commen ground that you consider two maps are homotopic if every point they mapped can be connected by a curve.

But what I know is only the definition of homotopy:f is homotopic to g if there exists a map F:X*I-->Y such that F(x,0)=f(x) and F(x,1)=g(x) for all points x belongs to X.

How do we know they are equivalent?Thanks!
 
  • #4
They are not equivalent. But notice that if you have a homotopy F(x,t):X*I-->Y, and you fix any point x_0 in x, then the map F(x_0,t):I-->Y is a continuous path from f(x_0) to g(x_0).

Of course to construct an homotopy from f to g it is not sufficient to just construct a bunch of path from f(x) to g(x) for all x.. these path must, "as a whole", move the space X around in a continuous manner. This is expressed in the requirement that the map F is continuous from the product space X x I to Y.

For instance, in 2., your homotopy, which it is convenient to consider as a bunch of path, will have to lift all the points of Y up to the tip of the cone more of less simultaneously, otherwise your homotopy will fail to be continuous.

As an illustration of what I mean, consider the case of a wannabe homotopy map F:X x I--> CY between f:X-->(Y x {0}) [itex]\subset[/itex] CY and g:X-->CY, such that as t goes from 0 to ¼, only one point of Y is lifted to the tip of the cone and all the others are maintained into place, and then as t goes from ¼ to ½, all the others are then lifted to the tip, and as t goes from ½ to 1, all the points run down to the appropriate value g(x). Well this is not a homotopy since it is not continuous: there is a "breaking" in the fabric of Y when that point if lifted up alone.Note that I made some edits to post #2.
 
  • #5
Thank you,I understand it.:)
 
  • #6
Does this imply that there are only two homotopy classes of maps from the circle (S^n, actually, I think) ,to itself; one class being repd. by the identity, and the other class
being repd. by the antipode map.?.

I could find the analytic description of the homotopy:

H(x,t) = [tf+(1-t)g ]/|| tf+ (1-t)g||

(which breaks down at t=1/2, if f(x)=-g(x) )

where ||.|| is the standard Euclidean norm, but I am having trouble visualizing
what happens when a point x gets mapped to its antipode. I tried using a cylinder
to visualize it, ( the problem should become clear halfway through the cylinder,
corresponding to the fact that the problem happens at t=1/2) , but I still cannot see
it.
Any Ideas.?
 
  • #7
Bacle said:
Does this imply that there are only two homotopy classes of maps from the circle (S^n, actually, I think) ,to itself; one class being repd. by the identity, and the other class
being repd. by the antipode map.?.
This would mean that the fundamental group of the circle has two elements, which you know isn't true.

Bacle said:
I could find the analytic description of the homotopy:

H(x,t) = [tf+(1-t)g ]/|| tf+ (1-t)g||

(which breaks down at t=1/2, if f(x)=-g(x) )

where ||.|| is the standard Euclidean norm, but I am having trouble visualizing
what happens when a point x gets mapped to its antipode. I tried using a cylinder
to visualize it, ( the problem should become clear halfway through the cylinder,
corresponding to the fact that the problem happens at t=1/2) , but I still cannot see
it.
Any Ideas.?

Well, if we stick to the case g=identity for simplicity, and if x is a point such that f(x)=-x, then what does the "path" H(x,t) looks like? For 0<t<½, H(x,t)=-x, for t=½, it is undefined, and for ½<t<1, H(x,t)=x.
 
  • #8
Quasar:
Thanks for your patience. I am an analyst-in-exile; my strength is more on the
analysis and pointset areas , but I am trying to learn the algebraic and geometric
parts of topology.

Hope this is not too dumb.

I was working with the cyclinder again, and I wondered: if we took an extreme case
of the identity i(x)=x, and the antipode map a(x)=-x . Why couldn't we homotope
i(x) into a(x) by gradually rotating i(x) into a(x) , so that, at H(x,1) , we have
rotated i(x) by Pi.?. Then H(x,t) would be a gradual rotation, which is continuous.

What is wrong with this statement.?
 
  • #9
Sorry, one more comment:

I understand, analytically, that my H(x,t) breaks down (meaning it is not continuous) at t=1/2 , for f(x)=i(x)=x, and g(x)= a(x)=-x. I was just trying to understand it more geometrically.

Besides, my H(x,t) is only one choice of homotopy, and there may be some
H'(x,t) that avoids the problem of H(x,t).

Thanks; if I don't get it this time, I will just go back to the drawing board myself
and figure out what I am missing.
 
  • #10
Bacle said:
Quasar:
Thanks for your patience. I am an analyst-in-exile; my strength is more on the
analysis and pointset areas , but I am trying to learn the algebraic and geometric
parts of topology.

Hope this is not too dumb.

I was working with the cyclinder again, and I wondered: if we took an extreme case
of the identity i(x)=x, and the antipode map a(x)=-x . Why couldn't we homotope
i(x) into a(x) by gradually rotating i(x) into a(x) , so that, at H(x,1) , we have
rotated i(x) by Pi.?. Then H(x,t) would be a gradual rotation, which is continuous.

What is wrong with this statement.?

Must there be something wrong? :smile:

The argument made above does not imply that the antipodal map is not homotopic to the identity. We simply said that if there is no point such that f(x)=-x, then f can be homotoped to the identity. This is not the same as saying that if there is a point such that f(x)=-x, then f cannot be homotoped to the identity.
Sure the particular homotopy we constructed to solve the problem breaks down for f=a the antipodal map, but that is not to say that we cannot find another one...which you did.
 
  • #11
Bacle said:
Sorry, one more comment:

I understand, analytically, that my H(x,t) breaks down (meaning it is not continuous) at t=1/2 , for f(x)=i(x)=x, and g(x)= a(x)=-x. I was just trying to understand it more geometrically.

Well, I don't know if this picture is what you would call more geometric, but recall what I said in post #2 as the intuitive picture for the homotopy:

"1. Define a homotopy from f to the identity like so: draw a line from f(x) to x. This line lies inside the disk the boundary of which is C, so it's not an homotopy in C. But make it so by "projecting" radially the line onto the circle. You can tell immediately that there is a problem with this construction when the line passes through the origin... that is to say, when f(x)=-x for some x!"

Why can I tell immediately that there is a problem with this construction when the line passes through the origin? Because there is no natural way to project a diameter onto the circle. Do you project it to the half circle on the right or on the left of the diameter? In both cases, you obviously introduce a gross discontinuity.
 
  • #12
O.K, I get the geometry now, thanks.

Just curious: if you have these examples at hand, could you please tell me
of two maps f:S^1-->S^1 that re not
homotopic to each other (except for the obvious cases of maps that wind
around the circle n and m times respectively.?. If i am not imposing too
much on you -- actually that ship sailed long ago, tho) .

If you don't have them offhand, don't worry, you have helped plenty.
 
  • #13
Don't worry about the ship Bacle, I enjoy trying to answer your question.

As for this one, well the answer is that as is well known, the fundamental group of the circle is made up precisely of the homotopy classes of the maps z-->z^k for every integer k in Z. Meaning that any two maps f,g:S^1-->S^1 will be homotopic to one of these. Say f~(z-->z^k) and g~(z-->z^l). And f and g will be homotopic to each other iff k=l.

One could say that, up to homotopy, there are no non-homotopic maps S^1-->S^1 other than the z-->z^k for different values of k.

This said, an example could be: f=(a constant map) and g=(a map that, as u go around the circle counter-clockwise, g goes halfway around the circle, then backs up a quarter turn, then backs up again and complete the turn around the circle). Then f is homotopic to z-->z^0 and g is homotopic to z-->z^1, so f and g are an example of non-homotopic maps other than the canonical example of z-->z^k for different values of k.

Is this what you were asking for?
 

1. What is a homotopy?

A homotopy is a continuous transformation between two maps or functions. It is a way of deforming one map into another while keeping the starting and ending points fixed.

2. Why is it important to find a homotopy between two maps?

Finding a homotopy between two maps is important because it allows us to show that the two maps are equivalent or "homotopic". This is useful in many areas of mathematics, including topology, differential geometry, and algebraic geometry.

3. How do you determine if two maps are homotopic?

To determine if two maps are homotopic, we need to find a continuous transformation or homotopy that connects them. This can be done by explicitly constructing the homotopy or by using various tools and techniques such as the fundamental group or homotopy groups.

4. What are some common techniques for finding a homotopy between two maps?

Some common techniques for finding a homotopy between two maps include using the deformation retraction method, the straight-line homotopy, and the product homotopy. Additionally, tools such as the fundamental group and homotopy groups can also be used to find a homotopy.

5. Can a homotopy be used to prove that two spaces are homeomorphic?

Yes, a homotopy can be used to prove that two spaces are homeomorphic. If a homotopy can be constructed between two spaces, then they are considered to be "topologically equivalent" or homeomorphic. This means that they have the same topological properties, such as the number of holes, but their shapes may differ.

Similar threads

  • Calculus and Beyond Homework Help
Replies
3
Views
230
  • Differential Geometry
Replies
20
Views
2K
Replies
8
Views
2K
Replies
1
Views
1K
  • Calculus and Beyond Homework Help
Replies
5
Views
224
Replies
1
Views
2K
Replies
4
Views
1K
  • Differential Geometry
Replies
4
Views
2K
  • Math POTW for Graduate Students
Replies
1
Views
2K
  • Math Proof Training and Practice
Replies
25
Views
2K
Back
Top