How to find combination of values which comes out of P&C formulas

  • Context: MHB 
  • Thread starter Thread starter rajemessage
  • Start date Start date
  • Tags Tags
    Combination Formulas
Click For Summary

Discussion Overview

The discussion revolves around finding combinations of values using permutations and combinations (P&C) formulas, specifically focusing on the formula for combinations, C(n, r) = n! / (r!(n-r)!), and how to generate subsets from a given set. Participants explore methods for calculating the number of combinations and generating subsets, while also expressing uncertainty about the best approaches.

Discussion Character

  • Exploratory
  • Technical explanation
  • Debate/contested
  • Mathematical reasoning

Main Points Raised

  • Some participants suggest using binary digits to represent subsets of a set, such as {abc}, and inquire about the relationship between binary representation and combinations.
  • Others clarify that the formula C(n, r) calculates the number of ways to choose r elements from n distinguishable objects, emphasizing that it does not provide the actual subsets.
  • A participant expresses a desire to understand how to find specific arrangements of a set of numbers, such as {1, 2, 3}, while allowing for variations in their order.
  • Some participants mention that there are various algorithms available for generating combinations and suggest looking up resources for more in-depth exploration.

Areas of Agreement / Disagreement

Participants generally agree on the use of the combination formula to determine the number of subsets but express differing views on how to generate or identify specific subsets. The discussion remains unresolved regarding the best methods for generating combinations and the specific arrangements of elements.

Contextual Notes

There are limitations in the discussion regarding the assumptions made about the order of elements and the definitions of subsets. Some participants highlight that the number of subsets can be calculated, but the actual subsets cannot be determined solely from the combination formula.

Who May Find This Useful

This discussion may be useful for individuals interested in combinatorial mathematics, algorithms for generating combinations, and those seeking to understand the relationship between binary representation and set theory.

rajemessage
Messages
13
Reaction score
0
Dear All,

like subsets {abc} can be found out using binary digits like

000
001
010
etc
etc.

how can i find the order of element for any combination which can be calulated useing following formula.
n!/r!(n-r)!

yours sincerley
 
Mathematics news on Phys.org
rajemessage said:
Dear All,

like subsets {abc} can be found out using binary digits like

000
001
010
etc
etc.

how can i find the order of element for any combination which can be calulated useing following formula.
n!/r!(n-r)!

yours sincerley

The formula $\displaystyle{C(n,r)=\frac{n!}{r!(n-r)!}}$ shows the number of ways a sample of “$r$” elements can be obtained from a larger set of “$n$” distinguishable objects where order does not count and repetitions are not allowed.Do you maybe want to find how many sets of $3$ elements can be created by using the digits $0$ and $1$ ?
 
mathmari said:
The formula $\displaystyle{C(n,r)=\frac{n!}{r!(n-r)!}}$ shows the number of ways a sample of “$r$” elements can be obtained from a larger set of “$n$” distinguishable objects where order does not count and repetitions are not allowed.Do you maybe want to find how many sets of $3$ elements can be created by using the digits $0$ and $1$ ?

like power set of {abc} can be found out using 3 digits of binary,
like
abc Subset
0 000 { }
1 001 {c}
2 010 {b}
3 011 {b,c}
4 100 {a}
5 101 {a,c}
6 110 {a,b}
7 111 {a,b,c}

in similar fashion i wanted to know the sets of $\displaystyle{C(n,r)=\frac{n!}{r!(n-r)!}}$
 
rajemessage said:
like power set of {abc} can be found out using 3 digits of binary,
like
abc Subset
0 000 { }
1 001 {c}
2 010 {b}
3 011 {b,c}
4 100 {a}
5 101 {a,c}
6 110 {a,b}
7 111 {a,b,c}

in similar fashion i wanted to know the sets of $\displaystyle{C(n,r)=\frac{n!}{r!(n-r)!}}$

You cannot find which subsets, only the number of them.

If you want to find the number of all the subsets of the set $\{a,b,c\}$:

The number of subsets with $0$ elements: $\displaystyle{C(3,0)=\frac{3!}{0!(3-0)!}=1}$

The number of subsets with $1$ elements: $\displaystyle{C(3,1)=\frac{3!}{1!(3-1)!}=\frac{3!}{2!}=3}$

The number of subsets with $2$ elements: $\displaystyle{C(3,2)=\frac{3!}{2!(3-2)!}=\frac{3!}{2!}=3}$

The number of subsets with $3$ elements: $\displaystyle{C(3,3)=\frac{3!}{3!(3-3)!}=1}$
 
mathmari said:
You cannot find which subsets, only the number of them.

If you want to find the number of all the subsets of the set $\{a,b,c\}$:

The number of subsets with $0$ elements: $\displaystyle{C(3,0)=\frac{3!}{0!(3-0)!}=1}$

The number of subsets with $1$ elements: $\displaystyle{C(3,1)=\frac{3!}{1!(3-1)!}=\frac{3!}{2!}=3}$

The number of subsets with $2$ elements: $\displaystyle{C(3,2)=\frac{3!}{2!(3-2)!}=\frac{3!}{2!}=3}$

The number of subsets with $3$ elements: $\displaystyle{C(3,3)=\frac{3!}{3!(3-3)!}=1}$

how can i find the sets from following situation.
i have three numbers,{1 2 3} which will always be in this order {123},
i want to find out number of cases can be made,
.
but 2 can come at frist position that is before 1 or at second position or at
third position that is after 3.
and all are optional any link will be helpfull.
yours sincerly
 
Last edited:
mathmari said:
You cannot find which subsets, only the number of them.
[snip]
Actually, there are many methods for generating the subsets. If you google "algorithms for generating combinations" you will find many hits. Here is one:
Algorithm to return all combinations of k elements from n - Stack Overflow

If you really want to read about the subject in depth, see Volume 4 of "The Art of Computer Programming" by Knuth. Section 7.2.1.3 is titled "Generating all combinations".

[edit] P.S. Clearly you don't want to try this by hand for large numbers of objects. Life is too short. [/edit]
 
Last edited:

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
6
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K