How to find combination of values which comes out of P&C formulas

  • Context: MHB 
  • Thread starter Thread starter rajemessage
  • Start date Start date
  • Tags Tags
    Combination Formulas
Click For Summary
SUMMARY

This discussion focuses on calculating combinations using the formula C(n, r) = n! / (r!(n-r)!), which determines the number of ways to choose r elements from a set of n distinguishable objects. The conversation highlights the relationship between binary representations and subsets, illustrating how to derive subsets from a set like {abc} using binary digits. Additionally, it emphasizes that while one can calculate the number of subsets, identifying the actual subsets requires different methods, such as algorithms for generating combinations.

PREREQUISITES
  • Understanding of factorial notation and operations
  • Familiarity with combinatorial mathematics
  • Basic knowledge of binary number systems
  • Awareness of algorithms for generating combinations
NEXT STEPS
  • Study the application of the combination formula C(n, r) in various mathematical problems
  • Learn about algorithms for generating combinations, such as recursive and iterative methods
  • Explore the concept of power sets and their relationship to combinations
  • Read "The Art of Computer Programming" by Donald Knuth, focusing on Section 7.2.1.3 for in-depth understanding
USEFUL FOR

Mathematicians, computer scientists, and anyone interested in combinatorial analysis or algorithm design will benefit from this discussion.

rajemessage
Messages
13
Reaction score
0
Dear All,

like subsets {abc} can be found out using binary digits like

000
001
010
etc
etc.

how can i find the order of element for any combination which can be calulated useing following formula.
n!/r!(n-r)!

yours sincerley
 
Mathematics news on Phys.org
rajemessage said:
Dear All,

like subsets {abc} can be found out using binary digits like

000
001
010
etc
etc.

how can i find the order of element for any combination which can be calulated useing following formula.
n!/r!(n-r)!

yours sincerley

The formula $\displaystyle{C(n,r)=\frac{n!}{r!(n-r)!}}$ shows the number of ways a sample of “$r$” elements can be obtained from a larger set of “$n$” distinguishable objects where order does not count and repetitions are not allowed.Do you maybe want to find how many sets of $3$ elements can be created by using the digits $0$ and $1$ ?
 
mathmari said:
The formula $\displaystyle{C(n,r)=\frac{n!}{r!(n-r)!}}$ shows the number of ways a sample of “$r$” elements can be obtained from a larger set of “$n$” distinguishable objects where order does not count and repetitions are not allowed.Do you maybe want to find how many sets of $3$ elements can be created by using the digits $0$ and $1$ ?

like power set of {abc} can be found out using 3 digits of binary,
like
abc Subset
0 000 { }
1 001 {c}
2 010 {b}
3 011 {b,c}
4 100 {a}
5 101 {a,c}
6 110 {a,b}
7 111 {a,b,c}

in similar fashion i wanted to know the sets of $\displaystyle{C(n,r)=\frac{n!}{r!(n-r)!}}$
 
rajemessage said:
like power set of {abc} can be found out using 3 digits of binary,
like
abc Subset
0 000 { }
1 001 {c}
2 010 {b}
3 011 {b,c}
4 100 {a}
5 101 {a,c}
6 110 {a,b}
7 111 {a,b,c}

in similar fashion i wanted to know the sets of $\displaystyle{C(n,r)=\frac{n!}{r!(n-r)!}}$

You cannot find which subsets, only the number of them.

If you want to find the number of all the subsets of the set $\{a,b,c\}$:

The number of subsets with $0$ elements: $\displaystyle{C(3,0)=\frac{3!}{0!(3-0)!}=1}$

The number of subsets with $1$ elements: $\displaystyle{C(3,1)=\frac{3!}{1!(3-1)!}=\frac{3!}{2!}=3}$

The number of subsets with $2$ elements: $\displaystyle{C(3,2)=\frac{3!}{2!(3-2)!}=\frac{3!}{2!}=3}$

The number of subsets with $3$ elements: $\displaystyle{C(3,3)=\frac{3!}{3!(3-3)!}=1}$
 
mathmari said:
You cannot find which subsets, only the number of them.

If you want to find the number of all the subsets of the set $\{a,b,c\}$:

The number of subsets with $0$ elements: $\displaystyle{C(3,0)=\frac{3!}{0!(3-0)!}=1}$

The number of subsets with $1$ elements: $\displaystyle{C(3,1)=\frac{3!}{1!(3-1)!}=\frac{3!}{2!}=3}$

The number of subsets with $2$ elements: $\displaystyle{C(3,2)=\frac{3!}{2!(3-2)!}=\frac{3!}{2!}=3}$

The number of subsets with $3$ elements: $\displaystyle{C(3,3)=\frac{3!}{3!(3-3)!}=1}$

how can i find the sets from following situation.
i have three numbers,{1 2 3} which will always be in this order {123},
i want to find out number of cases can be made,
.
but 2 can come at frist position that is before 1 or at second position or at
third position that is after 3.
and all are optional any link will be helpfull.
yours sincerly
 
Last edited:
mathmari said:
You cannot find which subsets, only the number of them.
[snip]
Actually, there are many methods for generating the subsets. If you google "algorithms for generating combinations" you will find many hits. Here is one:
Algorithm to return all combinations of k elements from n - Stack Overflow

If you really want to read about the subject in depth, see Volume 4 of "The Art of Computer Programming" by Knuth. Section 7.2.1.3 is titled "Generating all combinations".

[edit] P.S. Clearly you don't want to try this by hand for large numbers of objects. Life is too short. [/edit]
 
Last edited:

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 5 ·
Replies
5
Views
620
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
6
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K