How to Find the Canonical Partition Function for Two Quantum Particles?

RawrSpoon
Messages
18
Reaction score
0

Homework Statement


Consider a system of two quantum particles. Each particle has two quantum states, one with zero energy and one with energy ε>0. For each of the three cases, draw a table of the possible microstates α of the system, and find the canonical partition function Z(β).

a)The two particles are distinguishable

b) The two particles are indistinguishable bosons

c) The two particles are indistinguishable fermions

Homework Equations


Z(\beta,N)=\prod_{i=1}^{N}\sum_{E_{i}=0,\varepsilon} e^{-\beta E_{i}}=(1+e^{-\beta \varepsilon})^{N}

The Attempt at a Solution


a) The four states are pretty simple, they're {AB, 0}, {A, B}, {B, A}, {0, AB}. The partition function is also equally simple, being just Z(\beta, N) = (1+e^{-\beta \varepsilon})^{2}

b) This is where I get lost. The states are also pretty simple, being {AA, 0} {A, A}, {0, AA}. But the partition function is where I don't really understand how to proceed.

c) I get lost even worse here. The only possible state for this one is {A, A}. Again, the partition function is what gets me.

Thanks in advance for any possible help
 
Physics news on Phys.org
RawrSpoon said:
Z(\beta,N)=\prod_{i=1}^{N}\sum_{E_{i}=0,\varepsilon} e^{-\beta E_{i}}=(1+e^{-\beta \varepsilon})^{N}
This way of expressing ##Z## is not valid for parts (b) and (c) where the particles are indistinguishable.

For parts (b) and (c), use the more fundamental expression $$Z=\sum_i e^{-\beta E_{i}}$$ where the sum is over all possible microstates of the two-particle system. Here, ##i## labels the microstates and ##E_i## is the energy of the ##i^{\rm th}## microstate.
 
TSny said:
This way of expressing ##Z## is not valid for parts (b) and (c) where the particles are indistinguishable.

For parts (b) and (c), use the more fundamental expression $$Z=\sum_i e^{-\beta E_{i}}$$ where the sum is over all possible microstates of the two-particle system. Here, ##i## labels the microstates and ##E_i## is the energy of the ##i^{\rm th}## microstate.
Ok so then Z(\beta , N) = \sum_i e^{-\beta E_{i}} = (e^{-\beta (0)})+(e^{-\beta \varepsilon})+(e^{-2 \beta \varepsilon})

I assume that E_{i} is the total energy of each microstate, so given the microstates {AA,0}{A,A}{0,AA} I assume the energy is 0, \varepsilon, and 2 \varepsilon

Is this headed in the right direction or am I just totally off-base? I appreciate the responses :)
 
RawrSpoon said:
Ok so then Z(\beta , N) = \sum_i e^{-\beta E_{i}} = (e^{-\beta (0)})+(e^{-\beta \varepsilon})+(e^{-2 \beta \varepsilon})

I assume that E_{i} is the total energy of each microstate, so given the microstates {AA,0}{A,A}{0,AA} I assume the energy is 0, \varepsilon, and 2 \varepsilon

Is this headed in the right direction or am I just totally off-base? I appreciate the responses :)
That looks right.
 
TSny said:
That looks right.
Ahhhh it makes sense now. The reason the distinguishable particles is Z(\beta , 2) = (1+e^{-\beta \varepsilon})^{2} is because expanding the expression gives two different states where E_{i}=\varepsilon right? That means that for fermions, Z=e^{-\beta \varepsilon} since E_{i} can ONLY be \varepsilon due to the Pauli Exclusion Principle. I think I get it now, thanks!
 
RawrSpoon said:
Ahhhh it makes sense now. The reason the distinguishable particles is Z(\beta , 2) = (1+e^{-\beta \varepsilon})^{2} is because expanding the expression gives two different states where E_{i}=\varepsilon right?
Yes, that's correct.

That means that for fermions, Z=e^{-\beta \varepsilon} since E_{i} can ONLY be \varepsilon due to the Pauli Exclusion Principle.
Right. For this case, the system can only be in one state. So, you already know everything about the system. The partition function doesn't serve any purpose as far as I can see. It's just an academic exercise.
 
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top