How to find the heat energy produced in a resistor?

Click For Summary
To find the heat energy produced in a resistor, the correct approach involves using the formula E = QV, where Q is the charge in coulombs and V is the voltage. In the discussion, the current was calculated as 2/5 A, leading to a charge of 2.4 C over 6 seconds, resulting in 2.4 J, which is incorrect. The correct method involves calculating power using P = V^2/R, which gives 0.8 W, and then multiplying by time to find the energy, resulting in 4.8 J. This highlights the importance of using the right formulas for accurate calculations.
ellieee
Messages
78
Reaction score
6
Homework Statement
nil
Relevant Equations
I=Q/t
CamScanner 08-01-2021 22.49.jpg

i found current to be 2/5 A. then 2/5A multipled by 6s = 2.4C. and since one joule per coulomb is equal to the unit of p.d, i get 2.4J. I don't get 4.8J(supposed answer)
 
Physics news on Phys.org
ellieee said:
... then 2/5A multipled by 6s = 2.4C. and since one joule per coulomb is equal to the unit of p.d, i get 2.4J
The last step is where you went wrong.

Having 2 volts means that 2 joules of energy are transferred per coulomb.
Does that help?

A better way to do these sorts of problems is using simple formulae. The key formula relating energy transferred (E, in joules) when charge (Q in coulombs) flows through a potential difference (V in volts) is:

E = QV (worth learning)

Other handy formulae are V = IR and Q = It.

Another approach is to find the power (using an appropriate formula). Then, using the time, you can find the energy easily. But I don’t know which method you are expected to use.
 
Another way of approaching this is that the rate of heating is ##\frac{V^2}{R}##.
 
Chestermiller said:
Another way of approaching this is that the rate of heating is ##\frac{V^2}{R}##.
Agreed. I prefer to do problems the simplest way if possible, and not do extra calculations. Since we are given the Voltage and Resistance, that gives us the power directly as you say. Then just multiply by the time of 6 seconds to get the energy.

$$P = \frac{V^2}{R} = \frac{2^2}{5} = \frac{4}{5} [Watts]$$
$$Heat Energy = Power * Time = \frac{4}{5} [Watts] * 6 [seconds] = 4.8 [Joules]$$
 
Thread 'Correct statement about size of wire to produce larger extension'
The answer is (B) but I don't really understand why. Based on formula of Young Modulus: $$x=\frac{FL}{AE}$$ The second wire made of the same material so it means they have same Young Modulus. Larger extension means larger value of ##x## so to get larger value of ##x## we can increase ##F## and ##L## and decrease ##A## I am not sure whether there is change in ##F## for first and second wire so I will just assume ##F## does not change. It leaves (B) and (C) as possible options so why is (C)...

Similar threads

  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 4 ·
Replies
4
Views
779
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 22 ·
Replies
22
Views
3K
  • · Replies 12 ·
Replies
12
Views
8K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K