How to find the Moment of Inertia for a Sphero robot?

Click For Summary
SUMMARY

The discussion focuses on determining the moment of inertia (MOI) for a Sphero robot by conducting an experiment involving rolling down an incline without slipping. The energy conservation principle is applied, stating that the potential energy lost during a vertical drop is converted into kinetic energy and rotational energy. The formula derived is $$q=\frac{2gh}{V_{\text{cm}}^2}-1$$, where ##q## is a constant fraction related to the MOI. Key factors include measuring the vertical height of the drop and the speed at the bottom, while the mass and radius of the Sphero are irrelevant to this calculation.

PREREQUISITES
  • Understanding of energy conservation principles in physics
  • Familiarity with moment of inertia concepts
  • Knowledge of rotational motion equations
  • Basic experience with experimental design and data collection
NEXT STEPS
  • Research the application of energy conservation in rotational dynamics
  • Learn about the effects of mass distribution on moment of inertia
  • Explore the relationship between linear and angular velocity in rolling objects
  • Investigate experimental methods for measuring speed and height in physics experiments
USEFUL FOR

Physics students, robotics enthusiasts, and engineers interested in understanding the dynamics of rolling objects and calculating moment of inertia in practical applications.

GopherTv
Messages
7
Reaction score
1
TL;DR
A Sphero is a programable robot that has a Moment of inertia somewhere between 2/3MR^2 (Thin spherical shell) and 2/5MR^2 (Solid Sphere)
What kind of experiment can I design to determine the actual value of the moment of inertia. What should I instruct the sphero to do and what data should I collect?
 

Attachments

  • 1651112198259.png
    1651112198259.png
    109 KB · Views: 139
Physics news on Phys.org
Get it to roll without slipping down an incline starting from rest and have it report its speed at the bottom of the incline. Energy conservation says that for a vertical drop ##h## the potential energy is converted into kinetic energy of the center of mass and rotational energy about the center of mass,$$mgh=\frac{1}{2}mV_{\text{cm}}^2+\frac{1}{2}I_{\text{cm}}\omega^2.$$As you noted, you can write the moment of inertia about the CoM as ##I_{\text{cm}}=qmR^2## where ##q## is the constant fraction that you want to determine. If this thing rolls without slipping, ##\omega =\dfrac{V_{\text{cm}}}{R}## in which case the energy conservation equation becomes $$mgh=\frac{1}{2}mV_{\text{cm}}^2+\frac{1}{2}(qmR^2)\left( \frac{V_{\text{cm}}}{R}\right)^2.$$After the obvious cancellations you get $$gh=\frac{1}{2}V_{\text{cm}}^2+\frac{1}{2}qV_{\text{cm}}^2\implies q=\frac{2gh}{V_{\text{cm}}^2}-1.$$So all you have to do is measure the vertical height by which it drops and have it tell you how fast it is moving after it drops by that height and plug in. Its mass or radius don't matter with this technique. This is counterintuitive when what you are trying to determine is its moment of inertia but there you have it. Just make sure there is no slipping.
 
  • Like
Likes   Reactions: berkeman
kuruman said:
Just make sure there is no slipping.
And that it rolls down without power
 
Last edited:
  • Like
Likes   Reactions: kuruman
Ok, this makes sense, i appreciate the help.

Thanks!
 
  • Like
Likes   Reactions: berkeman
kuruman said:
Get it to roll without slipping down an incline starting from rest and have it report its speed at the bottom of the incline. Energy conservation says that for a vertical drop ##h## the potential energy is converted into kinetic energy of the center of mass and rotational energy about the center of mass,$$mgh=\frac{1}{2}mV_{\text{cm}}^2+\frac{1}{2}I_{\text{cm}}\omega^2.$$As you noted, you can write the moment of inertia about the CoM as ##I_{\text{cm}}=qmR^2## where ##q## is the constant fraction that you want to determine. If this thing rolls without slipping, ##\omega =\dfrac{V_{\text{cm}}}{R}## in which case the energy conservation equation becomes $$mgh=\frac{1}{2}mV_{\text{cm}}^2+\frac{1}{2}(qmR^2)\left( \frac{V_{\text{cm}}}{R}\right)^2.$$After the obvious cancellations you get $$gh=\frac{1}{2}V_{\text{cm}}^2+\frac{1}{2}qV_{\text{cm}}^2\implies q=\frac{2gh}{V_{\text{cm}}^2}-1.$$So all you have to do is measure the vertical height by which it drops and have it tell you how fast it is moving after it drops by that height and plug in. Its mass or radius don't matter with this technique. This is counterintuitive when what you are trying to determine is its moment of inertia but there you have it. Just make sure there is no slipping.
The CM might not be in the center of the sphere ( its axis of rotation) as it is in a solid sphere or shell with uniform density which I think adds another parameter to finding the MOI, thus making this inconclusive?

Does the robot itself rotate, or does it remain "level" while the shell rotates?

EDIT:
From what I can tell, the shell rotates, the "bot" driving it tries not to. So, if its rolling down a hill ( and it its on ) it is actively applying forces to the shell through it rollers to maintain it orientation. These forces ( and other internal rotating components ) are probably the reason the MOI appears to be between the shell and the solid sphere.
 
Last edited:

Similar threads

  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 49 ·
2
Replies
49
Views
5K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 67 ·
3
Replies
67
Views
7K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K