How to find the position update for Step 2 in Spring Problem

  • Thread starter Thread starter Troi Jones
  • Start date Start date
  • Tags Tags
    Position Spring
AI Thread Summary
The discussion centers on calculating the position update for a block attached to a spring after it is released. Initially, the block's forces, momentum, and velocity are calculated correctly, leading to a position of 0.30666 m at t = 0.09 seconds. However, confusion arises in the second step regarding how to update the position using forces instead of velocity. Participants clarify that the force equations should be used to find the new position, emphasizing that the weight of the mass affects the spring's length change. The correct approach involves manipulating the force equations to account for the forces acting on the block.
Troi Jones
Messages
13
Reaction score
0

Homework Statement


A spring has a relaxed length of 35 cm (0.35 m) and its spring stiffness is 10 N/m. You glue a 70 gram block (0.070 kg) to the top of the spring, and push the block down, compressing the spring so its total length is 12 cm. You make sure the block is at rest, then at time t = 0 you quickly move your hand away. The block begins to move upward, because the upward force on the block by the spring is greater than the downward force on the block by the Earth. Calculate approximately y vs. time for the block during a 0.27-second interval after you release the block, by applying the Momentum Principle in three steps each of 0.09-second duration.

Homework Equations


Fspring= kx
Fgrav= ma
Fnet= Fspring + Fgrav
p= mv
delta p= F*delta t
update position= Vavg*delta t= delta r

The Attempt at a Solution


STEP 1[/B]

Force: Just after releasing the block, calculate the force exerted on the block by the spring, the force exerted on the block by the Earth, and the net force:
Fspring,y = 2.3 NFEarth,y = -0.6867 N
Fnet,y = 1.6133 N

Momentum update: Just after releasing the block, the momentum of the block is zero. Approximate the average net force during the next time interval by the force you just calculated. At t = 0.09 seconds, what will the new momentum and velocity of the block be?
py = 0.145197 kg · m/s
vy = 2.074 m/s

Position update: Initially the bottom of the block is at y = 0.12 m. Approximating the average velocity in the first time interval by the final velocity, what will be the new position of the bottom of the block at time t = 0.09 seconds?
y = 0.30666 mSTEP 2

Force: At the new position, calculate the force exerted on the block by the spring, the force exerted on the block by the Earth, and the net force:
Fspring,y = 0.43 N
FEarth,y = -0.6867 N
Fnet,y = -0.2567 N

Momentum update: Approximate the average net force during the next time interval by the force you just calculated. At time t = 2 × 0.09 = 0.18 seconds, what will the new momentum and velocity of the block be?
py = 0.122094 kg · m/s
vy = 1.744 m/s

Position update: Approximating the average velocity in the second time interval by the final velocity, what will be the new position of the bottom of the block at time t = 2 × 0.09 = 0.18seconds?
y = ? m

I understand everything up until this second step position update. I am not sure how to compute it. My first try I got 0.478478 m but that was incorrect. I appreciated if I could have some guidance.
 
Physics news on Phys.org
Welcome to physicsforums!

Troi Jones said:
Fspring= kx
Fgrav= ma
Fnet= Fspring + Fgrav
p= mv
delta p= F*delta t
Good job at the equations.
Troi Jones said:
update position= Vavg*delta t= delta r
Troi Jones said:
Momentum update: Just after releasing the block, the momentum of the block is zero. Approximate the average net force during the next time interval by the force you just calculated. At t = 0.09 seconds, what will the new momentum and velocity of the block be?
py = 0.145197 kg · m/s
vy = 2.074 m/s

Position update: Initially the bottom of the block is at y = 0.12 m. Approximating the average velocity in the first time interval by the final velocity, what will be the new position of the bottom of the block at time t = 0.09 seconds?
y = 0.30666 m
Here's the thing, you found that the velocity at t=0.09 seconds was vy=2.074 m/s. When you started to calculate the position update, you assumed the same final velocity(2.074 m/s). But this is the velocity at t=0.09, not t=0; at t=0 the particle started with 0 velocity.

So comes the remedy: stop using velocity to calculate position update. Use the force equations instead.
 
phoenix95 said:
Welcome to physicsforums!Good job at the equations.Here's the thing, you found that the velocity at t=0.09 seconds was vy=2.074 m/s. When you started to calculate the position update, you assumed the same final velocity(2.074 m/s). But this is the velocity at t=0.09, not t=0; at t=0 the particle started with 0 velocity.

So comes the remedy: stop using velocity to calculate position update. Use the force equations instead.
Sorry, I am seem to be a bit confuse with the statement of using the force equations to find the new position than using velocity. Do I have to manipulate the force equations and set them equal to delta r?
 
Troi Jones said:
Do I have to manipulate the force equations and set them equal to delta r?
Force equations are fine, no need to manipulate them again.

Troi Jones said:
Fspring= kx
(I didn't notice before but the sign is wrong)
Use this equation. K is a constant forever so only variables are Fspring and x. But this time note that the force that is causing the spring length to change is actually the weight of the mass that is sitting on top of the spring.

Write ΔF = -kΔx, and continue.
 
phoenix95 said:
Force equations are fine, no need to manipulate them again.

(I didn't notice before but the sign is wrong)
Use this equation. K is a constant forever so only variables are Fspring and x. But this time note that the force that is causing the spring length to change is actually the weight of the mass that is sitting on top of the spring.

Write ΔF = -kΔx, and continue.
Ohhhhhh, that makes much more sense now. Thank you very much!
 
phoenix95 said:
Force equations are fine, no need to manipulate them again.

(I didn't notice before but the sign is wrong)
Use this equation. K is a constant forever so only variables are Fspring and x. But this time note that the force that is causing the spring length to change is actually the weight of the mass that is sitting on top of the spring.

Write ΔF = -kΔx, and continue.
Is this how my equation is suppose to be: ΔF = -kΔx = (0.43-2.3)= -(10)(xfinal - 3.0666)?
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top