MHB How to Find the Sum of a Geometric Series with Variables?

  • Thread starter Thread starter Spencer23
  • Start date Start date
  • Tags Tags
    Geometric
AI Thread Summary
To find the sum of the first eight elements of a geometric series with variables, the formula S = a1(1 - r^n) / (1 - r) can be applied. For the series where a1 = -5 and r = x, the sum becomes S = -5(1 - x^8) / (1 - x). An alternative method involves expressing the sum as S = -5(1 + x + x^2 + ... + x^7) and manipulating the equation to derive the same result. The final expression confirms that S = -5(1 - x^8) / (1 - x). This approach effectively combines both formulaic and algebraic methods to solve the problem.
Spencer23
Messages
4
Reaction score
0
Hey,

Sorry if I am in the wrong part of the forums not sure where this question goes. I am having trouble with a geometric series that has letters involved. I understand the forumla for finding the sum of first n elements with just numbers. However the series i have is ..

a1 = -5, a2 = -5x, a3 = -5x^2...

How do i go about finding the sum of the first 8 elements with the normal formula for doing so? Which I am under the impression is ...

a1(1-r^n)/1-r
 
Mathematics news on Phys.org
Spencer23 said:
Hey,

Sorry if I am in the wrong part of the forums not sure where this question goes. I am having trouble with a geometric series that has letters involved. I understand the forumla for finding the sum of first n elements with just numbers. However the series i have is ..

a1 = -5, a2 = -5x, a3 = -5x^2...

How do i go about finding the sum of the first 8 elements with the normal formula for doing so? Which I am under the impression is ...

a1(1-r^n)/1-r

Hi Spencer23! Welcome to MHB! :)

You are entirely correct.
So with $a_1=-5$, $n=8$, and $r=x$, we get:
$$a_1 + a_2 +...+a_8 = -5 \cdot \frac{1-x^8}{1-x}$$
 
If you wanted to work the problem without a formula, you could state:

$$S=-5-5x-5x^2-5x^3-5x^4-5x^5-5x^6-5x^7=-5\left(1+x+x^2+x^3+x^4+x^5+x^6+x^7\right)$$

Now, multiply both sides by $x$:

$$Sx=-5\left(x+x^2+x^3+x^4+x^5+x^6+x^7+x^8\right)$$

If we subtract the first equation from the second, we obtain:

$$S(x-1)=-5\left(x^8-1\right)$$

Hence:

$$S=-5\frac{x^8-1}{x-1}=-5\frac{1-x^8}{1-x}$$
 
Nice answer!

MarkFL said:
If you wanted to work the problem without a formula, you could state:

$$S=-5-5x-5x^2-5x^3-5x^4-5x^5-5x^6-5x^7=-5\left(1+x+x^2+x^3+x^4+x^5+x^6+x^7\right)$$

Now, multiply both sides by $x$:

$$Sx=-5\left(x+x^2+x^3+x^4+x^5+x^6+x^7+x^8\right)$$

If we subtract the first equation from the second, we obtain:

$$S(x-1)=-5\left(x^8-1\right)$$

Hence:

$$S=-5\frac{x^8-1}{x-1}=-5\frac{1-x^8}{1-x}$$
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Replies
6
Views
2K
Replies
7
Views
2K
Replies
3
Views
2K
Replies
7
Views
2K
Replies
3
Views
2K
Replies
20
Views
2K
Replies
3
Views
2K
Back
Top