Every time I ask something here, I end up needing to prove everything myself...
So if
<br />
\omega:\underbrace{\mathbb{R}^n \times \cdots \times \mathbb{R}^n}_{k\;\textrm{times}}\to\mathbb{R}<br />
is an alternating multilinear form, we define its "norm" with formula
<br />
\|\omega\|^2 = \frac{1}{k!}\sum_{i_1,\cdots, i_k=1}^{n} \omega_{i_1\cdots i_k}^2<br />
where coefficients \omega_{i_1\cdots i_k} have been chosen so that
<br />
\omega = \sum_{i_1,\cdots i_k=1}^n \omega_{i_1\cdots i_k} dx_{i_1}\otimes\cdots\otimes dx_{i_k}<br />
Then we interpret a vertical vector A_{*i} as a linear form
<br />
A_{*i} = \sum_{i'=1}^n A_{i'i} dx_{i'}<br />
and put forward a claim
<br />
\|A_{*1}\wedge\cdots\wedge A_{*k}\| = \sqrt{\det(A^TA)}<br />
How to prove this?
Here it goes! First verify
<br />
\omega = A_{*1}\wedge\cdots\wedge A_{*k}\quad\implies\quad \omega_{i_1\cdots i_k} = \sum_{\sigma\in S_k} \epsilon(\sigma) A_{i_1,\sigma(1)}\cdots A_{i_k,\sigma(k)}<br />
Then the final calculation begins:
<br />
\|A_{*1}\wedge\cdots\wedge A_{*k}\|^2 = \frac{1}{k!}\sum_{i_1,\cdots,i_k=1}^n \Big(\sum_{\sigma\in S_k} A_{i_1,\sigma(1)}\cdots A_{i_k,\sigma(k)}\Big)^2<br />
<br />
= \frac{1}{k!}\sum_{i_1,\cdots,i_k=1}^n\Big( \sum_{\sigma,\sigma'\in S_k} \epsilon(\sigma)\epsilon(\sigma') (A_{i_1,\sigma'(1)} A_{i_1,\sigma(1)})\cdots (A_{i_k,\sigma'(k)} A_{i_k,\sigma(k)})\Big)<br />
<br />
= \frac{1}{k!}\sum_{\sigma'\in S_k}\Big(\sum_{\sigma\in S_k} \epsilon(\sigma)\epsilon(\sigma') (A^TA)_{\sigma'(1),\sigma(1)}\cdots (A^TA)_{\sigma'(k),\sigma(k)}\Big) = \cdots<br />
With fixed \sigma' we can make change of variable \sigma\mapsto\sigma'' in the inner sum with formula \sigma''=\sigma\circ(\sigma')^{-1}. Then
<br />
\cdots = \frac{1}{k!}\sum_{\sigma'\in S_k}\Big(\sum_{\sigma''\in S_k} \epsilon(\sigma''\circ\sigma')\epsilon(\sigma') (A^TA)_{\sigma'(1),\sigma''(\sigma'(1))}\cdots (A^TA)_{\sigma'(k),\sigma''(\sigma'(k))}\Big)<br />
<br />
= \frac{1}{k!}\sum_{\sigma'\in S_k}\Big(\sum_{\sigma''\in S_k} \epsilon(\sigma'') (A^TA)_{1,\sigma''(1)}\cdots (A^TA)_{k,\sigma''(k)}\Big) = \cdots<br />
Now we see that the outer sum simply sums k! constant terms, which do not depend on \sigma'.
<br />
\cdots = \sum_{\sigma''\in S_k} \epsilon(\sigma'') (A^TA)_{1,\sigma''(1)} \cdots (A^TA)_{k,\sigma''(k)} = \det(A^TA).<br />