How to Generate Theorems for an Abstract System like Sudoku?

  • Thread starter Thread starter TylerH
  • Start date Start date
  • Tags Tags
    Sudoku
TylerH
Messages
729
Reaction score
0
For an exercise, I want to axiomatize sudoku.

I've came up with the definition of the sudoku puzzle in mathematical terms, as well as the definition of a solved puzzle. I'm have trouble going from there to draw theorems from my newly defined system. How does one generate theorems about an abstract system like this?

My definition:

Generalizing for an n^2 x n^2 sudoku puzzle:

Let there be a matrix, A, of deminsions, n x n, such that each element is a matrix of deminsions, n x n.
Let there be a set, S = {x exists in N, 1 <= x <= n^2}.

The puzzle is solved iff every element of A contains exactly one of each member of S and for every i from 1 to n, the set of elements in A(i, j) for j from 1 to n contains exactly one of each member of S.

Any suggestions on changes to the definition are also appreciated.
 
Physics news on Phys.org


With a sudoku puzzle, we can associate a operation * as:

*:\{1,...,n\}\times\{1,...,n\}\rightarrow \{1,...,n\}

such that k*l is the number in row k, column l. Thus the Cayley multiplication table of this operation is our Sudoku puzzle.

An interesting thing to find out is what properties our * satisfies. For example, you can show that * is cancelative, that is:

a*b=a*c~\Rightarrow~b=c

That's a theorem you can prove. Maybe you can search some other things that hold for our *...
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top