How to graph the complex function z^2 + z*^2 = 2?

  • Thread starter Thread starter lom
  • Start date Start date
  • Tags Tags
    Group
lom
Messages
29
Reaction score
0
z^2 +z'^2=2
' means complement
z=x+yi

i got x^2=2

so howto describe that on real complex graph
?
 
Physics news on Phys.org
lom said:
z^2 +z'^2=2
' means complement
z=x+yi

i got x^2=2

so howto describe that on real complex graph
?
I don't get x2 = 2. Also, the term is "conjugate" not "complement."
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top