alejandrito29
- 148
- 0
I need integrate "over heavy momenta" the following equation
\sigma v>=
<\sigma v>= \frac{1}{n^{(0)}_1n^{(0}}_2 \int \frac{d^3p_1}{(2Pi)^3 2 E_1} \int \frac{d^3p_2}{(2Pi)^3 2 E_2} \int \frac{d^3p_3 }{(2Pi)^3 2 E_3} \int \frac{d^3p_4}{(2Pi)^3 2 E_4} e^{-(E_1+E_2)/T} \\<br /> <br /> \cdot (2 Pi)^4 \delta^3 (p_1+p_2-p_3-p_4) \delta (E_1+E_2-E_3-E_4) M^2
where n+ \nu \rightarrow p+ e^-
I need to find that_
n_{\nu}^{(0)}< \sigma v>= \frac{Pi}{4m^2}\int \frac{d^3p_\nu}{(2Pi)^3 2 p_\nu} e^{-p_\nu/T}\int \frac{d^3p_e}{(2Pi)^3 2 p_e} \delta (Q-p_\nu-p_e) M^2
where Q=m_n-m_p
I tried very ways, for example using \delta^3 (p_1+p_2+p_3+p_4)= \delta(p_1)\delta(p_2)\delta(p_3)\delta(p_4) but i have very problems with the integration and with the propierties of Dirac Delta...
Help please
\sigma v>=
<\sigma v>= \frac{1}{n^{(0)}_1n^{(0}}_2 \int \frac{d^3p_1}{(2Pi)^3 2 E_1} \int \frac{d^3p_2}{(2Pi)^3 2 E_2} \int \frac{d^3p_3 }{(2Pi)^3 2 E_3} \int \frac{d^3p_4}{(2Pi)^3 2 E_4} e^{-(E_1+E_2)/T} \\<br /> <br /> \cdot (2 Pi)^4 \delta^3 (p_1+p_2-p_3-p_4) \delta (E_1+E_2-E_3-E_4) M^2
where n+ \nu \rightarrow p+ e^-
I need to find that_
n_{\nu}^{(0)}< \sigma v>= \frac{Pi}{4m^2}\int \frac{d^3p_\nu}{(2Pi)^3 2 p_\nu} e^{-p_\nu/T}\int \frac{d^3p_e}{(2Pi)^3 2 p_e} \delta (Q-p_\nu-p_e) M^2
where Q=m_n-m_p
I tried very ways, for example using \delta^3 (p_1+p_2+p_3+p_4)= \delta(p_1)\delta(p_2)\delta(p_3)\delta(p_4) but i have very problems with the integration and with the propierties of Dirac Delta...
Help please
Last edited: