How to Perform a Time Average of Radiation from a Moving Charge?

venatorr
Messages
4
Reaction score
0
1. The problem statement
The problem is from the textbook Mathematics for Physicist by S.M. Lea. it's problem 2.35

The power radiated per unit solid angle by a charge undergoing simple harmonic motion is

\frac{dP}{dΩ} = K \sin^{2}θ \frac{cos^{2}(ωt)}{(1+β \cosθ \sin(ωt))^{5}}


where the constant K is

K=\frac{e^{2}~c~β^{4}}{4~\pi~a^{2}}


and

β=\frac{a\omega}{c}


is the amplitude/c. Using the Residue Theorem, perform the time average over one period to show that

\left\langle \frac{dP}{dΩ} \right\rangle = \frac{K}{8}\sin^{2}\theta \frac{4+\beta ^{2}\cos^{2}\theta}{(1-\beta^{2}\cos^{2}\theta)^{10}}

\textit{}

Homework Equations




\cos\theta=\frac{1}{2}\left( z +\frac{1}{z}\right)​


\sin\theta=\frac{1}{2i}\left( z -\frac{1}{z}\right)


where z=e^{i\theta}

Residue theorem:

\oint_{C}f~dz = 2\pi i \sum Resf(z_{n})​


The Attempt at a Solution



the time average of a function f(t) is

\frac{1}{T}\int_{0}^{T}f(t)


My guess is that I have to convert the integral over time to an integral over θ and than convert it to an integral on the complex unit circle using the formula converting cosθ and sinθ to z. I can then do the integral using the Residue theorem

So i first converted it into an integral over theta

since \omega = \stackrel{~.}{\theta}


K \sin^{2}θ \frac{cos^{2}(ωt)}{(1+β \cosθ \sin(ωt))^{5}}dt

= K \sin^{2}θ \frac{cos^{2}(ωt)}{(1+β \cosθ \sin(ωt))^{5}} \frac{d\theta}{\omega}


However I'm stuck with the term ωt in the sin and cos and I don't know how to convert them into theta. Since the speed is not constant in simple harmonic motion, I can't simply say ωt = θ. I also don't think I can say that ωt is constant with respect to theta.
 
Physics news on Phys.org
venatorr said:
My guess is that I have to convert the integral over time to an integral over θ and than convert it to an integral on the complex unit circle using the formula converting cosθ and sinθ to z. I can then do the integral using the Residue theorem

No, in the given radiation law, \theta is the angle between the axis of the charged particles motion and the point at which the radiation is measured (the field point), while \omega is the angular frequency of its motion. The two quantities are completely independent.

Instead, just use the substitution z\equiv e^{i\omega t}.
 
Thanks a lot i got it !
 
venatorr said:
Using the Residue Theorem, perform the time average over one period to show that

\left\langle \frac{dP}{dΩ} \right\rangle = \frac{K}{8}\sin^{2}\theta \frac{4+\beta ^{2}\cos^{2}\theta}{(1-\beta^{2}\cos^{2}\theta)^{10}}

\textit{}


In case this thread is referred to in the future, I believe the power of 10 written above should be corrected to 7/2 (see for example Jackson's text, 2nd edition, problem 14.5). So

\left\langle \frac{dP}{dΩ} \right\rangle = \frac{K}{8}\sin^{2}\theta \frac{4+\beta ^{2}\cos^{2}\theta}{(1-\beta^{2}\cos^{2}\theta)^{7/2}}

\textit{}
 
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top