How to predict the shape of the circle from any point of view?

OFF_Smog
Messages
3
Reaction score
0
As we know a circle view at an angle appears as an ellipse,
as you see in the picture, the center of the camera aim to the center of the circle ,
the angle between the circle axis and the camera is ө,
the azimuth between mojor axis(a) and the camera is ∞,
the rotation of the camera is €,

1. How to predict an orientation of major and minor axis and the ratio of its axes(b/a)?? ,if we only know these ө,∞,€ angle, regardless of size of ellipses.

2. Is there any theory to apply this example?

attachment.php?attachmentid=46615&stc=1&d=1335275219.png
 

Attachments

  • 1.png
    1.png
    19.4 KB · Views: 777
Last edited:
Mathematics news on Phys.org
Not sure what there is to predict. In general what the camera does is a projection of the circle, or if we consider cone cuts, the variation of the camera. So one could calculate the position of the camera with respect to a fixed cone.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top