mnb96
- 711
- 5
Hello,
two distances d_1 and d_2 are said to be equivalent if for any two pairs (a,b) and (c,d)
d_1(a,b)=d_1(c,d) \Leftrightarrow d_2(a,b)=d_2(c,d)
How can I (dis)prove that:
d_1(a,b)<d_1(c,d) \Rightarrow d_2(a,b)<d_2(c,d)
two distances d_1 and d_2 are said to be equivalent if for any two pairs (a,b) and (c,d)
d_1(a,b)=d_1(c,d) \Leftrightarrow d_2(a,b)=d_2(c,d)
How can I (dis)prove that:
d_1(a,b)<d_1(c,d) \Rightarrow d_2(a,b)<d_2(c,d)