How to prove that motion is periodic but not simple harmonic?

Click For Summary
SUMMARY

The discussion focuses on proving that the function ##x = \sin(\omega t) + \sin(2\omega t) + \sin(4\omega t)## is periodic but not simple harmonic motion (SHM). Participants analyze the individual components of the function, noting that while each sine term represents SHM, their sum does not satisfy the condition ##\ddot x = -\Omega^2 x## required for SHM. The periodicity of the function is established with a period of ##T = \frac{2\pi}{\omega}##, but it is concluded that the function does not exhibit the characteristics of SHM due to the varying acceleration terms derived from the second derivative.

PREREQUISITES
  • Understanding of trigonometric functions and their properties
  • Knowledge of simple harmonic motion (SHM) and its mathematical representation
  • Familiarity with calculus, particularly differentiation and second derivatives
  • Ability to interpret and analyze graphical representations of functions
NEXT STEPS
  • Explore the characteristics of simple harmonic motion and its mathematical conditions
  • Learn about the superposition principle in wave functions and its implications
  • Study the graphical representation of trigonometric functions and their combinations
  • Investigate the relationship between periodic functions and their derivatives
USEFUL FOR

Students and professionals in physics and engineering, particularly those studying wave mechanics, oscillations, and mathematical modeling of periodic phenomena.

vcsharp2003
Messages
913
Reaction score
179
Thread moved from the technical forums to the schoolwork forums
TL;DR Summary: Prove that a sum of trigonometric ratios is periodic but not not simple harmonic.

We need to prove that ##x = sin{\omega t} + sin{2\omega t} + sin{4\omega t}## where ##x## is the displacement from the equilibrium position at time ##t##.

I can see that each term is a SHM, but not sure if the sum of these terms would be a simple harmonic motion.
Also, I can see that the time period of third term is one-fourth that of first term and time period of second term is half that of first term.

But after the above analysis, I am confused.
 
Physics news on Phys.org
Is there a number I can add to t to get the same x? What if I add 2t? 3t?
 
  • Like
Likes   Reactions: vcsharp2003
Addendum to the question posed by @Vanadium 50 above.
To complete the answer, you also have to prove that ##x## is periodic and find its period ##T##.
You might also wish to plot ##x## to guide your thinking.
 
  • Like
Likes   Reactions: nasu, vcsharp2003 and Vanadium 50
For SHM at angular frequency ##\Omega##, ##x## can always be expressed as ##x = A\sin(\Omega t + \phi)##.

So, for SHM, how is ##\ddot x## related to ##x##?
 
  • Like
Likes   Reactions: nasu and vcsharp2003
It is interesting that the easiest way to do this problem is to graph it for interval τ such that ωτ~10 π. You will immediately see if it repeats and if it looks like a sinusoid. Then you can show the result analytically as required. A lesson well learned
 
  • Like
Likes   Reactions: vcsharp2003
TSny said:
For SHM at angular frequency ##\Omega##, ##x## can always be expressed as ##x = A\sin(\Omega t + \phi)##.

So, for SHM, how is ##\ddot x## related to ##x##?
##a= -\omega ^2 x##
 
hutchphd said:
It is interesting that the easiest way to do this problem is to graph it for interval τ such that ωτ~10 π. You will immediately see if it repeats and if it looks like a sinusoid. Then you can show the result analytically as required. A lesson well learned
Did you mean ##\omega t = 10 \pi##?
 
vcsharp2003 said:
##a= -\omega ^2 x##
Or, ##\ddot x = -\Omega^2 x## for the example I gave.

The important thing is that for SHM the acceleration equals a constant times the displacement.

Does your series expression for ##x## have this property?
 
vcsharp2003 said:
Did you mean ωt=10π?
Did I say that awkwardly? The longest period T possible will be T=2π/ω so I want to look for times ~ five times that interval. Brain fog lately
 
  • Like
Likes   Reactions: vcsharp2003
  • #10
hutchphd said:
Did I say that awkwardly?
You didn't use the equal sign, so I was confused.
 
  • #11
Brain fog. I could see the = sign!! Apologies
 
  • Like
Likes   Reactions: vcsharp2003
  • #12
TSny said:
Or, ##\ddot x = -\Omega^2 x## for the example I gave.

The important thing is that for SHM the acceleration equals a constant times the displacement.

Does your series expression for ##x## have this property?
I get the following, after taking, second derivative of ##x## wrt ##t##.

##a= -\omega ^2 x -\omega ^2 (3 sin{(2\omega t)} + 15sin {(4\omega t)})##

Since for SHM, ##a= -\omega ^2 x##, so it's not SHM after looking at the above equation for ##a##. Is that correct reasoning?
 
Last edited:
  • Like
Likes   Reactions: erobz
  • #13
Vanadium 50 said:
Is there a number I can add to t to get the same x? What if I add 2t? 3t?
I get the following, but I cannot see the value of ##x## repeating.

##x(t+2t) = sin3\omega t + sin6\omega t +sin12\omega t##

##x(t+3t) = sin4\omega t + sin8\omega t +sin16\omega t##
 
  • #14
vcsharp2003 said:
I get the following, after taking, second derivative of ##x## wrt ##t##.

##a= -\omega ^2 x + 3 sin{2\omega t} + 15sin {4\omega t}##
That looks like it needs some parenthesis?
 
  • #15
erobz said:
That looks like it needs some parenthesis?
You mean parenthesis around ##2\omega t## and ##4\omega t##?
 
  • #16
vcsharp2003 said:
You mean parenthesis around ##2\omega t## and ##4\omega t##?
I meant:

$$\ddot x = -\omega^2 ( x + 3 \sin ( 2\omega t )+15\sin ( 4\omega t ) )$$
 
  • Like
Likes   Reactions: vcsharp2003 and berkeman
  • #17
erobz said:
I meant:

$$\ddot x = -\omega^2 ( x + 3 \sin ( 2\omega t )+15\sin ( 4\omega t ) )$$
Thanks! I couldn't parse what he posted... :smile:
 
  • Like
Likes   Reactions: erobz
  • #18
berkeman said:
Thanks! I couldn't parse what he posted... :smile:
Yes, my mistake. I had the following in my notebook, but wrote it incorrectly in the forums.

##a= -\omega ^2 x -\omega ^2 (3 sin{2\omega t} + 15sin {4\omega t})##

Also, I've corrected the equation in post#12 for which you reported the error.
 
  • Like
Likes   Reactions: erobz and berkeman
  • #19
vcsharp2003 said:
I get the following, but I cannot see the value of ##x## repeating.
Hint: Clearly ##x=0## at ##t=0##. At what value of ##t## does the next ##x=0## occur? How about the one after that?
 
  • Like
Likes   Reactions: erobz
  • #20
kuruman said:
Hint: Clearly ##x=0## at ##t=0##. At what value of ##t## does the next ##x=0## occur? How about the one after that?
That's not easy to me. Do I have to solve the trigonometric equation ##0=sin{\omega t} + sin{2\omega t} + sin{4\omega t}##?

It seems when ## t= \dfrac {\pi}{w}## then also ##x=0##.
 
Last edited:
  • #21
vcsharp2003 said:
That's not easy to me. Do I have to solve the trigonometric equation ##0=sin{\omega t} + sin{2\omega t} + sin{4\omega t}##?
Not really. Take first term,##~\sin(\omega t)##. At what values of ##t## is it zero? Were you not taught that when you took trig?
 
  • Like
Likes   Reactions: Vanadium 50 and vcsharp2003
  • #22
vcsharp2003 said:
That's not easy to me. Do I have to solve the trigonometric equation ##0=sin{\omega t} + sin{2\omega t} + sin{4\omega t}##?
Further hint: think of certain multiples of a very famous transcendental number.
 
  • Like
Likes   Reactions: vcsharp2003
  • #23
kuruman said:
Not really. Take first term,##~\sin(\omega t)##. At what values of ##t## is it zero? Were you not taught that when you took trig?
Yes, I can see it. First term would be zero when ##t = n\pi## where n is any integer i.e. +ve or -ve or zero.
 
  • #24
erobz said:
Further hint: think of certain multiples of a very famous transcendental number.
Hahaha. That's a nice hint.
 
  • #25
vcsharp2003 said:
It seems when ## t= \dfrac {\pi}{w}## then also ##x=0##.
So it seems. But are the two the same kind of zero in the sense that ##\sin(\omega t)## crosses the axis going the same way? That's why I suggested that you plot this thing.
 
  • Like
Likes   Reactions: erobz and vcsharp2003
  • #26
kuruman said:
So it seems. But are the two the same kind of zero in the sense that ##\sin(\omega t)## crosses the axis going the same way? That's why I suggested that you plot this thing.
I see. I will try that too.
 
  • Like
Likes   Reactions: erobz
  • #27
vcsharp2003 said:
Hahaha. That's a nice hint.
Parity matters as @kuruman points out, which is why I said certain multiples.
 
  • Like
Likes   Reactions: vcsharp2003
  • #28
kuruman said:
That's why I suggested that you plot this thing.
First thing I did. :wink: We often take for granted the tools we now have at our disposal to answer these types of questions with almost no effort. Then (once you know what you are working toward) worry about the mathematical purist approach!
 
  • #29
erobz said:
Parity matters as @kuruman points out, which is why I said certain multiples.
##n=0,1,2,3...##. Is this what you meant by certain multiples?
 
  • #30
vcsharp2003 said:
##n=0,1,2,3...##. Is this what you meant by certain multiples?
parity refers to even-odd
 
  • Like
Likes   Reactions: vcsharp2003

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 17 ·
Replies
17
Views
3K
Replies
16
Views
2K
Replies
25
Views
1K
  • · Replies 13 ·
Replies
13
Views
1K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 13 ·
Replies
13
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K