- #1
oliverkahn
- 27
- 2
- Homework Statement
- To prove: ##\dfrac{d[f(r)]}{dr}=## constant
- Relevant Equations
- Given (1): ##r=\sqrt{a^2 + p^2 - 2 ap \cos \theta}##
where ##a,p,\theta## are independent
Given (2): ##\dfrac{d[f(a+p)]}{dp}=\dfrac{d[f(a-p)]}{dp}##
My try:
##\begin{align}
\dfrac{d {r^2}}{d r} \dfrac{\partial r}{\partial p} = \dfrac{\partial {r^2}}{\partial p} \tag1\\
\dfrac{\partial r}{\partial p} = \dfrac{\partial {r^2}}{\partial p} \dfrac{1}{\dfrac{d r^2}{d r}}=\dfrac{p-a\cos\theta}{r} \tag2\\
\end{align}##
By chain rule:
##\dfrac{\partial [f(r)]}{\partial p}=\dfrac{d [f(r)]}{d r} \dfrac{\partial r}{\partial p} = \dfrac{d [f(r)]}{d r} \dfrac{p-a\cos\theta}{r}##
If it is the right approach, please complete the proof.
I do not even know if it is the right approach.
Thanks in advance ##\forall## help.
##\begin{align}
\dfrac{d {r^2}}{d r} \dfrac{\partial r}{\partial p} = \dfrac{\partial {r^2}}{\partial p} \tag1\\
\dfrac{\partial r}{\partial p} = \dfrac{\partial {r^2}}{\partial p} \dfrac{1}{\dfrac{d r^2}{d r}}=\dfrac{p-a\cos\theta}{r} \tag2\\
\end{align}##
By chain rule:
##\dfrac{\partial [f(r)]}{\partial p}=\dfrac{d [f(r)]}{d r} \dfrac{\partial r}{\partial p} = \dfrac{d [f(r)]}{d r} \dfrac{p-a\cos\theta}{r}##
If it is the right approach, please complete the proof.
I do not even know if it is the right approach.
Thanks in advance ##\forall## help.