1. Not finding help here? Sign up for a free 30min tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Change of variables Laplace Equation

  1. Aug 6, 2014 #1
    1. The problem statement, all variables and given/known data

    Write the Laplace equation [tex]\dfrac {\partial ^{2}F} {\partial x^{2}}+\dfrac {\partial ^{2}F} {\partial y^{2}}=0[/tex] in terms of polar coordinates.



    2. Relevant equations
    [tex]
    r=\sqrt {x^{2}+y^{2}}
    [/tex]
    [tex]
    \theta =\tan ^{-1}(\frac{y}{x})
    [/tex]
    [tex]
    \dfrac {\partial r} {\partial x}=\cos \theta
    [/tex]
    [tex]
    \dfrac {\partial \theta } {\partial x}=-\dfrac {\sin \theta } {r}
    [/tex]
    [tex]
    \dfrac {\partial r} {\partial y}=\sin \theta
    [/tex]
    [tex]
    \dfrac {\partial \theta } {\partial y}=\dfrac {\cos \theta } {r}
    [/tex]

    3. The attempt at a solution

    My goal was to find the second derivative of F with respect to x and y in terms of derivatives in terms of r and theta and then substitute into Laplace's equation. So I started by taking the first derivative with respect to x and y to get:
    [tex]

    \dfrac {\partial F} {\partial x}=\dfrac {\partial F} {\partial r}\cdot \dfrac {\partial r} {\partial x}+\dfrac {\partial F} {\partial \theta }\cdot \dfrac {\partial \theta } {\partial x} =\cos \theta \dfrac {\partial F} {\partial r}-\dfrac {\sin \theta } {r}\dfrac {\partial F} {\partial \theta }
    [/tex]
    [tex]
    \dfrac {\partial F} {\partial y}=\dfrac {\partial F} {\partial r}\cdot \dfrac {\partial r} {\partial y}+\dfrac {\partial F} {\partial \theta }-\dfrac {\partial \theta } {\partial y} =\sin \theta \dfrac {\partial F} {\partial r}+\dfrac {\cos \theta } {r}\dfrac {\partial F} {\partial \theta }
    [/tex]


    Based on [itex] \dfrac {\partial F} {\partial x} [/itex], I found the operator [itex]\dfrac {\partial } {\partial x}[/itex] to be

    [tex]\dfrac {\partial } {\partial x}=\left( \cos \theta \dfrac {\partial } {\partial r}-\dfrac {\sin \theta } {r}\dfrac {\partial } {\partial \theta }\right) [/tex]

    and [itex]\dfrac {\partial } {\partial y}[/itex] to be

    [tex]\dfrac {\partial } {\partial y}=\left( \sin \theta \dfrac {\partial } {\partial r}+\dfrac {\cos \theta } {r}\dfrac {\partial } {\partial \theta }\right) [/tex]

    Now I need to find [itex]\dfrac {\partial ^{2}F} {\partial x^{2}}=\dfrac {\partial } {\partial x}\left( \dfrac {\partial F} {\partial x}\right) [/itex] and I get:

    [tex]\dfrac {\partial } {\partial x}\left( \dfrac {\partial F} {\partial x}\right) =\left( \cos \theta \dfrac {\partial } {\partial r}-\dfrac {\sin \theta } {r}\dfrac {d} {\partial \theta }\right) \left( \cos \theta \dfrac {\partial F} {\partial r}-\dfrac {\sin \theta } {r}\dfrac {\partial F} {\partial \theta }\right) [/tex]

    I distribute to and simplify to get:
    [tex]\dfrac {\partial } {\partial x}\left( \dfrac {\partial F} {\partial x}\right) =\cos ^{2}\theta \dfrac {\partial ^{2}F} {\partial r^2}-\dfrac {2} {r}\sin \theta \cos \theta \dfrac {\partial f^{2}} {\partial rd\theta }+\dfrac {\sin ^{2}\theta } {r^{2}}\dfrac {d^{2}F} {d\theta ^{2}}[/tex]

    Now I need the same for [itex]\dfrac {\partial ^{2}F} {\partial y^{2}}=\dfrac {\partial } {\partial y}\left( \dfrac {\partial F} {\partial y}\right) [/itex] and I get:

    [tex]\dfrac {\partial } {\partial y}\left( \dfrac {\partial F} {\partial y}\right) =\left( \sin \theta \dfrac {\partial } {\partial r}+\dfrac {\cos \theta } {r}\dfrac {\partial } {\partial \theta }\right) \left( sin\theta \dfrac {\partial F} {\partial r}+\dfrac {\cos \theta } {r}\dfrac {\partial F} {\partial \theta }\right) [/tex]

    I distribute and simplify to get:
    [tex]\dfrac {\partial } {\partial y}\left( \dfrac {\partial F} {dy}\right) =\sin ^{2}\theta \dfrac {\partial ^{2}F} {\partial r^{2}}+\dfrac {2\sin \theta \cos \theta } {r}\dfrac {\partial ^{2}F} {\partial rd\theta }+\dfrac {\cos ^{2}\theta } {r^{2}}\dfrac {\partial ^{2}F} {\partial \theta ^{2}}[/tex]

    When I add these two second derivatives (wrt to x and y) and simplify, I get:
    [tex]\dfrac {\partial ^{2}F} {\partial x^{2}}+\dfrac {\partial ^{2}F} {\partial y^{2}}=\dfrac {d^{2}F} {\partial r^{2}}+\dfrac {1} {r^{2}}\dfrac {\partial ^{2}F} {\partial \theta ^{2}}[/tex]

    But this is not completely right. The second term is correct, but the answer should be:
    [tex]\dfrac {1} {r}\dfrac {\partial } {\partial r}\left( r\dfrac {\partial F} {\partial r}\right) +\dfrac {1} {r^{2}}\dfrac {\partial ^{2}F} {\partial \theta ^{2}}[/tex]

    I know this is a long post, but any ideas on where I went wrong?

    Thanks so much in advance.
     
    Last edited: Aug 6, 2014
  2. jcsd
  3. Aug 6, 2014 #2

    pasmith

    User Avatar
    Homework Helper

    Correct so far.

    Here is your error. You should find that [tex]
    \frac{\partial}{\partial r}\left( \cos \theta \frac{\partial F}{\partial r} - \frac{\sin \theta}r \frac{\partial F}{\partial \theta} \right) =
    \cos \theta \frac{\partial^2 F}{\partial r^2} - \frac{\sin\theta}{r} \frac{\partial^2 F}{\partial r\,\partial \theta} + \frac{\sin\theta}{r^2} \frac{\partial F}{\partial \theta}
    [/tex] and [tex]
    \frac{\partial}{\partial \theta} \left( \cos \theta \frac{\partial F}{\partial r} - \frac{\sin \theta}r \frac{\partial F}{\partial \theta} \right) =
    \cos \theta \frac{\partial^2 F}{\partial r\,\partial\theta} - \sin \theta \frac{\partial F}{\partial r} - \frac{\sin \theta}r \frac{\partial^2 F}{\partial \theta^2} - \frac{\cos\theta}r \frac{\partial F}{\partial \theta}[/tex] and hence that [tex]
    \frac{\partial^2 F}{\partial x^2} = \cos^2 \theta \frac{\partial^2 F}{\partial r^2} + \frac{\sin^2 \theta}{r} \frac{\partial F}{\partial r} + \frac{\sin^2 \theta}{r^2} \frac{\partial^2 F}{\partial \theta^2}
    - 2\frac{\cos \theta \sin \theta}r \frac{\partial^2 F}{\partial r\,\partial\theta} + 2\frac{\cos\theta \sin \theta}{r^2} \frac{\partial F}{\partial \theta}.[/tex]

    I suspect you have made a similar error in your calculation of [itex]\frac{\partial^2 F}{\partial y^2}[/itex].
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?
Draft saved Draft deleted



Similar Discussions: Change of variables Laplace Equation
Loading...