How to Recognize Split Electric Fields - Comments

Click For Summary
SUMMARY

This discussion centers on the distinction between two types of electric fields: the electromagnetic field (Em) and the electrostatic field (Es). Participants debate the necessity and implications of this split, with some arguing that it is essential for understanding phenomena such as battery operation and Faraday's Law, while others assert that there is fundamentally only one electromagnetic field represented by the Faraday tensor. The conversation highlights the mathematical and conceptual frameworks that underpin these fields, emphasizing the importance of clarity in their definitions and applications.

PREREQUISITES
  • Understanding of electric fields and their definitions in physics.
  • Familiarity with Faraday's Law and its implications in electromagnetism.
  • Knowledge of Maxwell's equations and the concept of electromagnetic fields.
  • Basic principles of circuit theory and battery operation.
NEXT STEPS
  • Study the mathematical representation of electromagnetic fields using the Faraday tensor.
  • Explore the implications of the Aharonov-Bohm effect in quantum mechanics.
  • Research the practical applications of distinguishing between Em and Es fields in circuit analysis.
  • Examine the role of internal resistance in battery performance and its effect on electric fields.
USEFUL FOR

Physicists, electrical engineers, and students of electromagnetism seeking to deepen their understanding of electric fields and their applications in theoretical and practical contexts.

  • #121
I'm going to go out on a limb here and just say that I don't think it then makes sense to decompose the electric field inside an inductor. You must either get two conservative fields, or two non-conservative fields (so any talk of a Helmholtz decomposition is out of the question). Of these two choices, both can produce a non-zero closed curve line integral due to the fact the domain is not simply connected. However, these don't make much sense in this context.

Feynman's treatment is the only one I've come across that I understand. I am done messing around with these unphysical splits :rolleyes:
 
  • Like
Likes   Reactions: vanhees71, rude man and Dale
Physics news on Phys.org
  • #122
Dale said:
Well, it certainly isn’t as straightforward as it seems since the straightforward analysis for a battery leads to an inconsistent set of equations.

In any case, if what he is describing is not a Helmholtz decomposition then I am exceptionally skeptical of its validity. A much more rigorous treatment is required
Even for the inductor, I don't believe it is a Helmholtz decomposition. It seems to be in the category of a mathematical construction, with the ## E_s ## well-behaved and following the rules of electrostatics, (e.g. ## \oint E_s \cdot dl=0 ##), while the EMF's and the associated ## E_m ##'s, where ## \mathcal{E}=\int E_m \cdot dl ##, are basically a very different animal.
 
Last edited:
  • #123
Charles Link said:
Even for the inductor, I don't believe it is a Helmholtz decomposition. It seems to be in the category of a mathematical construction, with the ## E_s ## well-behaved and following the rules of electrostatics, while the EMF's and the associated ## E_m ##'s, where ## \mathcal{E}=\int E_m \cdot dl ##, are basically a very different animal.
Then I think some mathematical rigor is necessary. E.g. a definitive formula for calculating these split fields in terms of standard EM quantities. Otherwise any discussion requires consulting an oracle to determine the decomposition

If it is not a Helmholtz decomposition then the only other thing I could see is that it is the decomposition ##E_s=-\nabla \phi## and ##E_m= -\frac{\partial}{\partial t} A## where ##\phi## and ##A## are the scalar and vector potentials in the Coulomb gauge. But who knows, it certainly isn’t described here with enough rigor to say.
 
Last edited:
  • Like
Likes   Reactions: vanhees71 and etotheipi
  • #124
Dale said:
Then I think some mathematical rigor is necessary. E.g. a definitive formula for calculating these split fields in terms of standard EM quantities. Otherwise any discussion requires consulting an oracle to determine the decomposition
It seems to be a model that some like and others don't. In the case of an inductor, there is sufficient symmetry that ## E_m ## can be computed. For a battery, such symmetry is absent, and it becomes a somewhat abstract description. It doesn't have tremendous mathematical rigor in that sense. You can postulate ## \mathcal{E}=\int E_m \cdot dl ## for some ## E_m ##, but you can't measure the ## E_m ## because it is always offset by a ## -E_s ##. Personally, I see some merit in the description, but others seem to find it to be lacking in fundamental soundness.
 
  • #125
Charles Link said:
I do see some merit to @rude man 's approach.
What is the merit? Please be specific.
The open circuit electric potential of a battery is a fixed number, and that is well known and is very useful.
To infer, from that single fact, that there must exist an internal electric field Em (m is for magic) is, charitably, an interesting conjecture. It neither simplifies the circuit analysis nor elucidates any actual underlying physics.
Please can we please stop discussing Chimera. I am certainly finished.
 
  • Like
Likes   Reactions: Dale and Charles Link
  • #126
Dale said:
Well, (98.2) didn’t come from me. That was from @rude man. It is clear that he will need to discard at least one of those equations in (98.1-6), but I am not sure which he will choose.
I am deliriously happy with 98. 1-6.

BTW 98.3 is a vector addition so ## \bf E_s + \bf E_m = 0 ## in coil (or battery or ...).
## \bf E_m ## points - to + in battery, ## \bf E_s ## points + to - in & outside battery.
|##E_s ##| = |##E_m##| in battery or coil wire.
No inconsistency, no sale.
 
  • Skeptical
Likes   Reactions: weirdoguy
  • #127
rude man said:
I am deliriously happy with 98. 1-6.
Then you have discarded mathematics
 
  • Like
Likes   Reactions: etotheipi and vanhees71
  • #128
@rude man Clearly 98.2 is incorrect. You do not have ## \nabla \cdot E_m =0 ## for the ## E_m ## that your model gives. I think posts 124 and 125 kind of summarize the general consensus of this methodology.
 
  • #129
Charles Link said:
@rude man Clearly 98.2 is incorrect. You do not have ## \nabla \cdot E_m =0 ## for the ## E_m ## that your model gives. I think posts 124 and 125 kind of summarize the general consensus of this methodology.
## \nabla \cdot \bf E = 0 ## for ANY electric field. Just ask Maxwell.
 
  • Sad
  • Skeptical
Likes   Reactions: weirdoguy and etotheipi
  • #130
Dale said:
Then you have discarded mathematics
OK.
 
  • Sad
  • Wow
Likes   Reactions: weirdoguy, etotheipi and Dale
  • #131
rude man said:
OK.
With that I think we are done here. There is no point in discussing something that is knowingly so diametrically opposed to all of physics since Newton’s day. This is a very disappointing outcome for this thread.
 
Last edited:
  • Like
Likes   Reactions: Averagesupernova, weirdoguy, vanhees71 and 1 other person

Similar threads

  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 51 ·
2
Replies
51
Views
9K
  • · Replies 25 ·
Replies
25
Views
2K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 3 ·
Replies
3
Views
536
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 29 ·
Replies
29
Views
1K
  • · Replies 1 ·
Replies
1
Views
50K