Bruno Tolentino
- 96
- 0
Someone can explain me how to get the general solution for this system of ODE of second order with constant coeficients:<br />
\begin{bmatrix}<br />
a_{11} & a_{12}\\ <br />
a_{21} & a_{22}\\<br />
\end{bmatrix}<br />
<br />
\begin{bmatrix}<br />
\frac{d^2x}{dt^2}\\ <br />
\frac{d^2y}{dt^2}\\<br />
\end{bmatrix}<br />
<br />
+<br />
<br />
\begin{bmatrix}<br />
b_{11} & b_{12}\\ <br />
b_{21} & b_{22}\\<br />
\end{bmatrix}<br />
<br />
\begin{bmatrix}<br />
\frac{dx}{dt}\\ <br />
\frac{dy}{dt}\\<br />
\end{bmatrix}<br />
<br />
+<br />
<br />
\begin{bmatrix}<br />
c_{11} & c_{12}\\ <br />
c_{21} & c_{22}\\<br />
\end{bmatrix}<br />
<br />
\begin{bmatrix}<br />
x\\ <br />
y\\<br />
\end{bmatrix}<br />
<br />
=<br />
<br />
\begin{bmatrix}<br />
0\\ <br />
0\\<br />
\end{bmatrix}<br />
OBS: source of the doubt: https://es.wikipedia.org/wiki/Movimiento_armónico_complejo
OBS: source of the doubt: https://es.wikipedia.org/wiki/Movimiento_armónico_complejo