How to show an isomorphism between groups?

  • Thread starter Thread starter blahblah8724
  • Start date Start date
  • Tags Tags
    Groups Isomorphism
blahblah8724
Messages
31
Reaction score
0
Is the only way to show an isomorphism between groups is to just define a map which has the isomorphism properties?

So for example for a group G with order 15 to show that G \cong C_3 \times C_5 would I just have to define all the possible transformations to define the isomorphism?


Thanks!
 
Physics news on Phys.org
blahblah8724 said:
Is the only way to show an isomorphism between groups is to just define a map which has the isomorphism properties?
In a sense, yes, but you don't have to define the map explicitly. You can use theorems about the structure theory of groups to help you out. These are theorems that say something along the lines of "if a group satisfies property P, then it must also satisfy property Q". So, for instance, a group of order 15 must have subgroups H and K of orders 3 and 5 (by Cauchy's theorem), and these subgroups must be normal (by Sylow's theorem), and their intersection must be trivial (by Lagrange's theorem), so G must be isomorphic to the internal direct product HxK (this follows from another structure theorem - which one?).

Of course, after making all these deductions, you can explicitly write down an isomorphism G \to C_3 \times C_5, but the point is you didn't have to start out by looking for such a map.
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...

Similar threads

Back
Top