How to Show Lorentz's Identity with Relative Speed?

wtronic
Messages
10
Reaction score
0

Homework Statement


start from:
x = [x' + vt']/sqrt[1 - v^2/c^2]
ct = [v/cx' +ct']/sqrt[1 - v^2/c^2]
y = y'
z = z'

Homework Equations


show that

( 1 - \frac{u^{2}}{c^{2}})(1+\frac{vux'^{2}}{c^{2}}) = ( 1 - \frac{v^{2}}{c^{2}})(1-\frac{u'^{2}}{c^{2}})


The Attempt at a Solution



ok, I have spent many hours on this crappy thing. We have no book in class so...
I derived the lorentz transformation for ux, uy, and uz... as well as u'x', u'y', u'z'... then i computed the velocities in each fram using u = sqrt[ ux^2 + uy^2 + uz^2] and the same for u'. Nevertheless I end up in some mess of algebraic letters that get me nowhere close to the answer. I just need some sort of hit as to how to approach this problem.

thansk for any hints.
 
Last edited:
Physics news on Phys.org
What are u,v,u' ? Is -v the velocity of unprimed system wrt the primed system? Then what's u? I suggest that you post the entire problem as it was given. That way, there's no scope for confusion.
 
yeah, I know it is confusing... but that is the whole problem... exactly as it was given to us.
For what understand it is like this

u = speed of particle 1 in S frame of reference
u = sqrt[ux^2 + uy^2 + uz^2]
u' = speed of same particle after a lorentz transformation in the S' frame of reference
u' = sqrt[u'x^2 + u'y^2 + u'z^2]

now, v would be the speed of one reference with respect to the other. I assume it is the v that carries over from the gamma sqrt[1-v^2/c^2] from the lorentz transformation.

sorry about my notation, but I can't understand how to use latex yet.

thanks for the reply
 
this the actual equation

[text]1+u_{x}single-quoteV/c^2=\sqrt(1-usingle-quote^2/c^2)*\sqrt(1-V^2/c^2)/\sqrt(1-u^2/c^2)[/text]
 
Last edited:
never mind guys, i found the answer... i will post the stepwise solution when i get a chance to write it on latex or scan it
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top