MHB How to show uniqueness in this statement for integers

Click For Summary
The statement claims there exists a unique integer n such that n^2 + 2 = 3. The proof shows that n can be either -1 or +1, indicating two valid integer solutions. This demonstrates that the solution is not unique, as both integers satisfy the equation. The discussion emphasizes that the uniqueness fails when considering all integers, including negatives. Therefore, the statement is disproven by the existence of multiple solutions.
cbarker1
Gold Member
MHB
Messages
345
Reaction score
23
Dear Everyone,

Directions: Decide whether the statement is a theorem. If it is a theorem, prove it. if not, give a counterexample.

There exists a unique integer n such that $$n^2+2=3$$.

Proof:
Let n be the integer.

$$n^2+2=3$$
$$n^2=1$$
$$n=\pm1$$

How show this is unique or not? Please explain why if not.
 
Mathematics news on Phys.org
Cbarker1 said:
Dear Everyone,

Directions: Decide whether the statement is a theorem. If it is a theorem, prove it. if not, give a counterexample.

There exists a unique integer n such that $$n^2+2=3$$.

Proof:
Let n be the integer.

$$n^2+2=3$$
$$n^2=1$$
$$n=\pm1$$

How show this is unique or not? Please explain why if not.

Hi Cbarker1,

You found 2 integer solutions that indeed satisfy the equation.
Doesn't that mean that the solution is not unique?
Our counter example is the fact that both n=-1 and n=+1 are solutions.
It would be different if we were only looking at natural numbers, excluding negative numbers, but 'just' integers can be negative.
 
I like Serena said:
Hi Cbarker1,

You found 2 integer solutions that indeed satisfy the equation.
Doesn't that mean that the solution is not unique?
Our counter example is the fact that both n=-1 and n=+1 are solutions.
It would be different if we were only looking at natural numbers, excluding negative numbers, but 'just' integers can be negative.

Yes, since I found two solutions to satisfy the equation. therefore, n is not unique.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 35 ·
2
Replies
35
Views
5K
Replies
1
Views
2K
  • · Replies 105 ·
4
Replies
105
Views
8K
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
27
Views
3K
  • · Replies 16 ·
Replies
16
Views
2K