\frac{d^l}{dx^l}\sum_{k=0}^{l}{\left(\frac{l !}{k!\left(l-k\right)!}\right)x^{2k}\left(-1\right)^{l-k}}
Differentiate once (1st time):
\frac{d^{l-1}}{dx^{l-1}}\sum_{k=0}^{l}{\left(\frac{l !}{k!\left(l-k\right)!}\right)2kx^{2k-1}\left(-1\right)^{l-k}}
Differentiate again (2nd time):
\frac{d^{l-2}}{dx^{l-2}}\sum_{k=0}^{l}{\left(\frac{l !}{k!\left(l-k\right)!}\right)2k(2k-1)x^{2k-2}\left(-1\right)^{l-k}}
Differentiate again (third time):
\frac{d^{l-3}}{dx^{l-3}}\sum_{k=0}^{l}{\left(\frac{l !}{k!\left(l-k\right)!}\right)2k(2k-1)(2k-2)x^{2k-3}\left(-1\right)^{l-k}}
...
...
Differentiate
lth time:
\frac{d^{l-l}}{dx^{l-l}}\sum_{k=0}^{l}{\left(\frac{l !}{k!\left(l-k\right)!}\right)2k(2k-1)(2k-2)...(2k-(l-1))x^{2k-l}\left(-1\right)^{l-k}}
That leaves me with:
\sum_{k=0}^{l}{\left(\frac{l !}{k!\left(l-k\right)!}\right)2k(2k-1)(2k-2)...(2k-(l-1))x^{2k-l}\left(-1\right)^{l-k}}
Now, if k=0, the whole expression is zero. So we can rewrite it as:
\sum_{k=1}^{l}{\left(\frac{l !}{k!\left(l-k\right)!}\right)2k(2k-1)(2k-2)...(2k-(l-1))x^{2k-l}\left(-1\right)^{l-k}}
But if k=\frac{1}{2}, then the expression is also zero. But
k can only be an integer. However, due to the term 2k-2, if k=1 the expression is zero. So rewrite as:
\sum_{k=2}^{l}{\left(\frac{l !}{k!\left(l-k\right)!}\right)2k(2k-1)(2k-2)...(2k-(l-1))x^{2k-l}\left(-1\right)^{l-k}}
Now let's just cut to the chase:
(2k-(l-1)
If k=\frac{l-1}{2} or less, the expression is zero.
So rewrite as:
\sum_{k=\frac{l-1}{2}+1}^{l}{\left(\frac{l !}{k!\left(l-k\right)!}\right)2k(2k-1)(2k-2)...(2k-(l-1))x^{2k-l}\left(-1\right)^{l-k}}
Which can be written as:
\sum_{k=\frac{l+1}{2}}^{l}{\left(\frac{l !}{k!\left(l-k\right)!}\right)2k(2k-1)(2k-2)...(2k-(l-1))x^{2k-l}\left(-1\right)^{l-k}}
That only works if
l is odd. If
l is even, then it would be written as:
\sum_{k=\frac{l}{2}}^{l}{\left(\frac{l !}{k!\left(l-k\right)!}\right)2k(2k-1)(2k-2)...(2k-(l-1))x^{2k-l}\left(-1\right)^{l-k}}
So we have the following:
A_l=\frac{\left(2l+1\right)}{2^l l!}\int_0^1\frac{d^l}{dx^l}\left(x^2-1\right)^ldx
=\frac{\left(2l+1\right)}{2^l l!}\int_0^1\sum_{k=\frac{l}{2}}^{l}{\left(\frac{l !}{k!\left(l-k\right)!}\right)2k(2k-1)(2k-2)...(2k-(l-1))x^{2k-l}\left(-1\right)^{l-k}}dx
=\frac{\left(2l+1\right)}{2^l l!}\sum_{k=\frac{l}{2}}^{l}{\left(\frac{l !}{k!\left(l-k\right)!}\right)2k(2k-1)(2k-2)...(2k-(l-1))\left(-1\right)^{l-k}\int_0^1x^{2k-l}}dx for even
l
=\frac{\left(2l+1\right)}{2^l l!}\sum_{k=\frac{l+1}{2}}^{l}{\left(\frac{l !}{k!\left(l-k\right)!}\right)2k(2k-1)(2k-2)...(2k-(l-1))\left(-1\right)^{l-k}\int_0^1x^{2k-l}}dx for odd
l
Now: \int_0^1x^{2k-l}dx=\frac{1}{2k-l+1}x^{2k-l+1} evaluated from 1 to 0:
That would equal:
\int_0^1x^{2k-l}dx=\frac{1}{2k-l+1}
So now we have:
A_l=\frac{\left(2l+1\right)}{2^l l!}\sum_{k=\frac{l}{2},\frac{l+1}{2}}^{l}{\left(\frac{l !}{k!\left(l-k\right)!}\right)2k(2k-1)(2k-2)...(2k-(l-1))\left(-1\right)^{l-k}\frac{1}{2k-l+1}
Which can be written as:
A_l=\frac{\left(2l+1\right)}{2^l l!}\sum_{k=\frac{l}{2},\frac{l+1}{2}}^{l}{\left(\frac{l !}{k!\left(l-k\right)!}\right)2k(2k-1)(2k-2)...(2k-(l-2))\left(-1\right)^{l-k}
Now I still have that sum.