How to Solve a Bessel Differential Equation Using Runge-Kutta in C?

aadepetun
Messages
2
Reaction score
0

Attachments

  • ae.GIF
    ae.GIF
    13.8 KB · Views: 760
  • beta.GIF
    beta.GIF
    5.9 KB · Views: 737
Physics news on Phys.org


link does not work
 


Oh... I don't know why... but you can see the equations in the attachments below... thanks
 


how can solve bessel equation by runge-kutta, beginning with positive value of x and y ,and y' (integrat forward and backwar in x )plot y with c language
please help
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top