How to Solve a Difficult LP Problem?

  • Thread starter Thread starter aeronautical
  • Start date Start date
aeronautical
Messages
33
Reaction score
0

Homework Statement



Solve the LP problem?
Minimize -x_{1} - 5x_{2} + x_{3}

when

x_{1} + 3x_{2} + 3 x_{3} <= 4
- x_{1} - 2x_{2} + x_{3} >= -5
3x_{2} - x_{3} <= 3
x_{1}, x_{2}, x_{3} >= 0

Please explain how this process works (with all the steps), thanks.


The Attempt at a Solution



I read somewhere that in order to consider a minimized problem, one shall maximize: -x_{1} - 5x_{2} + x_{3}
 
Physics news on Phys.org
aeronautical said:

Homework Statement



Solve the LP problem?
Minimize -x_{1} - 5x_{2} + x_{3}

when

x_{1} + 3x_{2} + 3 x_{3} <= 4
- x_{1} - 2x_{2} + x_{3} >= -5
3x_{2} - x_{3} <= 3
x_{1}, x_{2}, x_{3} >= 0

Please explain how this process works (with all the steps), thanks.


The Attempt at a Solution



I read somewhere that in order to consider a minimized problem, one shall maximize: -x_{1} - 5x_{2} + x_{3}
No, that's not it at all, although minimizing -x1 -5x2 + x3 is equivalent to maximizing +x1 +5x2 - x3. There is also the concept of the dual problem in linear programming, which is more involved than I have time or inclination to explain right now.

For your problem, you have only three variables, so why don't you graph your feasible region? Any potential solution will occur at a corner point, so all you have to do is to evaluation your objective function (-x1 -5x2 + x3), and pick the point that gives you the smallest value.
 
The basic concept of LP is that the max or min of a linear function on a convex set occurs at a vertex. Find the vertices of the set (the points where the bounding planes intersect) and evaluate the object function at each one to determine where it is a minimum.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top