MHB How to Solve a Trig Integral with Three Terms Using Integration by Parts?

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Integral Trig
Click For Summary
The integral \( I = \int x \sec(x) \tan(x) \, dx \) can be solved using integration by parts (IBP). By selecting \( u = x \) and \( dv = \sec(x) \tan(x) \, dx \), the resulting integration yields \( I = x \sec(x) - \int \sec(x) \, dx \). The integral of \( \sec(x) \) leads to the final result of \( I = x \sec(x) - \ln|\tan(x) + \sec(x)| + C \). This approach effectively utilizes the IBP method to handle the three terms in the integral. The discussion emphasizes the importance of choosing appropriate \( u \) and \( dv \) for successful integration.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\large {S6.7.1.17}$
$\tiny\text {trig Integration}$
$$\displaystyle
I= \int x \sec\left({x}\right)\tan\left({x}\right)\, dx \\$$
OK this has 3 terms so the inclination is IBP
If $u=\tan\left({x}\right)$ and $du=\sec^2 \left({x}\right) \, dx $
but don't see this fitting in
$\tiny\text{ Surf the Nations math study group}$
🏄 🏄
 
Physics news on Phys.org
$$I=x\sec(x)-\int\sec(x)\,dx$$
 
karush said:
$\large {S6.7.1.17}$
$\tiny\text {trig Integration}$
$$\displaystyle
I= \int x \sec\left({x}\right)\tan\left({x}\right)\, dx \\$$
OK this has 3 terms so the inclination is IBP
If $u=\tan\left({x}\right)$ and $du=\sec^2 \left({x}\right) \, dx $
but don't see this fitting in
$\tiny\text{ Surf the Nations math study group}$
🏄 🏄

LIATE tells us to try:

$$u=x\,\therefore\,du=dx$$

$$dv=\sec(x)\tan(x)\,dx\,\therefore\,v=\sec(x)$$

And this gives you the result Greg posted. :)
 
$\large {S6.7.1.17}$
$\tiny\text {trig Integration}$
$$\displaystyle
I= \int x \sec\left({x}\right)\tan\left({x}\right)\, dx \\$$
IBP
$$\displaystyle
\begin{align}
{u} & = {x} & {dv}&= \sec\left({x}\right)\tan\left({x}\right)
\ d{x} & \\
{du}&=du& {v}&={\sec(x) }
\end{align} \\
I=x \sec(x) - \int \sec(x) dx \implies
x\sec\left(x\right)-\ln\left(\left|\tan\left(x\right)+\sec\left(x\right)\right|\right)+C
$$
🏄 🏄
 
Last edited:

Similar threads