How to Solve a Trig Integral with Three Terms Using Integration by Parts?

  • Context: MHB 
  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Integral Trig
Click For Summary
SUMMARY

The discussion focuses on solving the integral $$I= \int x \sec\left({x}\right)\tan\left({x}\right)\, dx$$ using Integration by Parts (IBP). Participants utilize the LIATE rule to select appropriate functions, setting $$u=x$$ and $$dv=\sec(x)\tan(x)\,dx$$, leading to the solution $$I=x \sec(x) - \ln\left(\left|\tan\left(x\right)+\sec\left(x\right)\right|\right)+C$$. The method effectively demonstrates the application of IBP in trigonometric integrals with three terms.

PREREQUISITES
  • Understanding of Integration by Parts (IBP)
  • Familiarity with the LIATE rule for function selection
  • Knowledge of trigonometric functions, specifically secant and tangent
  • Basic skills in calculus, particularly integration techniques
NEXT STEPS
  • Study advanced Integration by Parts techniques in calculus
  • Explore the application of the LIATE rule in various integrals
  • Learn about the properties and applications of secant and tangent functions
  • Investigate other methods for solving trigonometric integrals
USEFUL FOR

Students and educators in calculus, mathematicians focusing on integral calculus, and anyone seeking to enhance their understanding of trigonometric integrals and integration techniques.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\large {S6.7.1.17}$
$\tiny\text {trig Integration}$
$$\displaystyle
I= \int x \sec\left({x}\right)\tan\left({x}\right)\, dx \\$$
OK this has 3 terms so the inclination is IBP
If $u=\tan\left({x}\right)$ and $du=\sec^2 \left({x}\right) \, dx $
but don't see this fitting in
$\tiny\text{ Surf the Nations math study group}$
🏄 🏄
 
Physics news on Phys.org
$$I=x\sec(x)-\int\sec(x)\,dx$$
 
karush said:
$\large {S6.7.1.17}$
$\tiny\text {trig Integration}$
$$\displaystyle
I= \int x \sec\left({x}\right)\tan\left({x}\right)\, dx \\$$
OK this has 3 terms so the inclination is IBP
If $u=\tan\left({x}\right)$ and $du=\sec^2 \left({x}\right) \, dx $
but don't see this fitting in
$\tiny\text{ Surf the Nations math study group}$
🏄 🏄

LIATE tells us to try:

$$u=x\,\therefore\,du=dx$$

$$dv=\sec(x)\tan(x)\,dx\,\therefore\,v=\sec(x)$$

And this gives you the result Greg posted. :)
 
$\large {S6.7.1.17}$
$\tiny\text {trig Integration}$
$$\displaystyle
I= \int x \sec\left({x}\right)\tan\left({x}\right)\, dx \\$$
IBP
$$\displaystyle
\begin{align}
{u} & = {x} & {dv}&= \sec\left({x}\right)\tan\left({x}\right)
\ d{x} & \\
{du}&=du& {v}&={\sec(x) }
\end{align} \\
I=x \sec(x) - \int \sec(x) dx \implies
x\sec\left(x\right)-\ln\left(\left|\tan\left(x\right)+\sec\left(x\right)\right|\right)+C
$$
🏄 🏄
 
Last edited:

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K