MHB How to Solve Laplace Transforms with a Fractional Term?

AI Thread Summary
The discussion focuses on solving the inverse Laplace transform of a given expression involving a fractional term. Participants reference standard Laplace transform tables, noting the forms for cosine and sine transforms, and express uncertainty about how to adapt these for a different denominator structure. A participant suggests rewriting the expression to utilize the hyperbolic sine and cosine transforms, leading to a solution involving exponential functions. The conversation concludes with a confirmation of understanding the mathematical approach to proceed with the calculations.
rannasquaer
Messages
6
Reaction score
0
How to solve the transforms below

\[ \mathscr{L}^{-1} \frac{a(s+2 \lambda)+b}{(s+ \lambda)^2- \omega^2} \]
 
Mathematics news on Phys.org
rannasquaer said:
How to solve the transforms below

\[ \mathscr{L}^{-1} \frac{a(s+2 \lambda)+b}{(s+ \lambda)^2- \omega^2} \]

The table of Laplace transforms lists that $\mathscr{L}^{-1} \frac{s+\alpha}{(s+\alpha)^2+\omega^2} = e^{-\alpha t}\cos(\omega t)\cdot u(t)$ and $\mathscr{L}^{-1} \frac{\omega}{(s+\alpha)^2+\omega^2} = e^{-\alpha t}\sin(\omega t)\cdot u(t)$.

Can we use those to find the requested transform?
 
Klaas van Aarsen said:
The table of Laplace transforms lists that $\mathscr{L}^{-1} \frac{s+\alpha}{(s+\alpha)^2+\omega^2} = e^{-\alpha t}\cos(\omega t)\cdot u(t)$ and $\mathscr{L}^{-1} \frac{\omega}{(s+\alpha)^2+\omega^2} = e^{-\alpha t}\sin(\omega t)\cdot u(t)$.

Can we use those to find the requested transform?

I think yes, if I rewrite like

\[ \mathscr{L}^{-1} \frac{a(s+\lambda)}{(s+ \lambda)^2- \omega^2} + \mathscr{L}^{-1} \frac{b + \lambda a}{(s+ \lambda)^2- \omega^2} \]

but I have \[ (s+\lambda)^2-\omega^2 \] and not \[ (s+\lambda)^2+\omega^2 \]

The table of Laplace transforms lists that \[ \mathscr{L}^{-1} \frac{\alpha}{s^2- \alpha^2} = \sin h(\alpha t).u(t) \] and \[ \mathscr{L}^{-1} \frac{s}{s^2- \alpha^2} = \cos h(\alpha t).u(t) \]

I do not know what to do now
 
rannasquaer said:
I think yes, if I rewrite like

\[ \mathscr{L}^{-1} \frac{a(s+\lambda)}{(s+ \lambda)^2- \omega^2} + \mathscr{L}^{-1} \frac{b + \lambda a}{(s+ \lambda)^2- \omega^2} \]

but I have \[ (s+\lambda)^2-\omega^2 \] and not \[ (s+\lambda)^2+\omega^2 \]

The table of Laplace transforms lists that \[ \mathscr{L}^{-1} \frac{\alpha}{s^2- \alpha^2} = \sin h(\alpha t).u(t) \] and \[ \mathscr{L}^{-1} \frac{s}{s^2- \alpha^2} = \cos h(\alpha t).u(t) \]

I do not know what to do now

Right. I meant the $\cosh$ and $\sinh$ versions.

Also note that $\mathscr{L}^{-1} F(s-\alpha)=e^{\alpha t}f(t)$.

So we can do:
\[ \mathscr{L}^{-1} \frac{a(s+\lambda)}{(s+ \lambda)^2- \omega^2} + \mathscr{L}^{-1} \frac{b + \lambda a}{(s+ \lambda)^2- \omega^2} =a e^{-\lambda t}\sinh(\omega t) \cdot u(t)+ \frac{b+\lambda a}{\omega}e^{-\lambda t}\cosh(\omega t) \cdot u(t)\]
And if we want to, we can rewrite it using $\sinh x= \frac 12(e^x-e^{-x})$ and $\cosh x=\frac 12(e^x + e^{-x})$.
 
Great, I understood how to continue to do the math. Thank you!😄
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top