beyondlight
- 64
- 0
Homework Statement
Let X(t) and Y(t) be independent Poisson processes, both with rates. Define Z(t)=X(t)+Y(t).
Find E[X(1)|Z(2)=2].
2. The attempt at a solution
P(X(1)=k|Z(2)=2)=P(X(1)=k|X(2)+Y(2)=2)=\frac{P(X(1)=k,X(2)+Y(2)=2)}{P(X(2)+Y(2)=2)}=\\\frac{P(X(1)=k,X(2)+Y(2)=2,Y(2)=0)+P(X(1)=k,X(2)+Y(2)=2,Y(2)=1)+P(X(1)=k,X(2)+Y(2)=2,Y(2)=2)}{P(X(2)=2,Y(2)=0)+P(X(2)=1,Y(2)=1)+P(X(2)=0,Y(2)=2)}
Next step is following, let's call this part 2:
\frac{P(X(1)=k)P(X(2)-X(1)=2-k)P(Y(2)=0)+P(X(1)=K)P(X(2)-X(1)=1-k)P(Y(2)=1)+P(X(1)=k)P(X(2)-X(1)=-k)P(Y(2)=2)}{0.5e^{-2}+e^{-2}+0.5e^{-2}}
This is further simplified (part 3):
0.5e[P(X(1)=k)P(X(1)=2-k)+P(X(1)=k)P(X(1)=1-k)+P(X(1)=k)P(X(1)=-k)0.5]
3. Basic theory
I know that two non-intersecting intervals are independent and that is why the expression X(2)-X(1) is desirable.
Bayes rule and the rule of independence are used in these equations.
However i do not understand the steps in the equations at all...Can someone explain how to think when solving this equation?