When you have multiple roots, you must multiply the term with a polynomial. For double roots, the polynomial is n+1, and for triple roots, it's \frac{\left(n+1\right)\left(n+2\right)}2, etc.
We extend the definition of a to the negative domain, and let a_n=0 for n<0. Then we find the value of a_{n+2}-6a_{n+1}+9a_n for n<0.
a_1-6a_0+9a_{-1}=-2
a_0-6a_{-1}+9a_{-2}=1
a_{n+2}-6a_{n+1}+9a_n=0 for n<-2.
Then the equation becomes:
a_{n+2}-6a_{n+1}+9a_n=H\left[n\right]\left(3\cdot 2^n+7\cdot 3^n\right)-2\delta\left[n+2\right]+\delta\left[n+1\right], where H is the unit step function.
The Z-transform of this equation is:
A\left(z\right)=\frac{\frac 3{1-2z^{-1}}+\frac 7{1-3z^{-1}}-2z^2+z}{\left(z^2-6z+9\right)}=\frac{\frac 3{1-2z^{-1}}+\frac 7{1-3z^{-1}}-2z^2+z}{\left(z-3\right)^2}=\frac{3\left(1-3z^{-1}\right)+7\left(1-2z^{-1}\right)+\left(z-2z^2\right)\left(1-5z^{-1}+6z^{-2}\right)}{\left(1-2z^{-1}\right)\left(1-3z^{-1}\right)\left(z-3\right)^2}=
\frac{z^2-6z+1+17z^{-1}}{\left(1-2z^{-1}\right)\left(1-3z^{-1}\right)\left(z-3\right)^2}=
\frac{z^4-6z^3+z^2+17z}{\left(z-2\right)\left(z-3\right)^3}
We can write this as:
A\left(z\right)=\frac P{z-2}+\frac {Qz^2+Rz+S}{\left(z-3\right)^3}
Then:
P\left(z-3\right)^3+\left(Qz^2+Rz+S\right)\left(z-2\right)=P\left(z^3-9z^2+27z-27\right)+Q\left(z^3-2z^2\right)+R\left(z^2-2z\right)+S\left(z-2\right)=z^4-6z^3+z^2+17z
We can try solving it in this way:
P+Q=0
-9P-2Q+R=0
27P-2R+S=0
-27P-2S=z^4-6z^3+z^2+17z
This has the following solution:
P=-z^4+6z^3-z^2-17z
Q=z^4-6z^3+z^2+17z
R=-7z^4+42z^3-7z^2-119z
S=13z^4-78z^3+13z^2-221z
The inverse Z-transform of \frac{-z^4+6z^3-z^2-17z}{z-2}+\frac {13z^6-85z^5+56z^4+208z^3-118z^2+17z}{\left(z-3\right)^3} is:
2^n\left(-8H\left[n+3\right]+24H\left[n+2\right]-2H\left[n+1\right]-17H\left[n\right]\right)+
\frac{3^n}2\left(351H\left[n+3\right]\left(n+4\right)\left(n+5\right)-765H\left[n+2\right]\left(n+3\right)\left(n+4\right)+168H\left[n+1\right]\left(n+2\right)\left(n+3\right)+
208H\left[n\right]\left(n+1\right)\left(n+2\right)-\frac{118}3H\left[n-1\right]\left n\left(n+1\right)+\frac{17}9H\left[n-2\right]\left(n-1\right)n\right)
So, that's your function, if my calculations are correct. If not, just follow this general method and you should get the correct answer. It can be simplified further by ignoring the H's and adding all the terms containing n.