How to specify the direction of an area vector?

  • #1
Hawkingo
56
2
We all know that the area of a triangle having consecutive sides as ##\vec { a }## and ##\vec { b }## has the area ##\frac { 1 } { 2 } | \vec { a } \times \vec { b } |## but what is the direction of that area vector? I mean if we consider ##\vec { a } \times \vec { b }## that will be one direction and if we consider ##\vec { b } \times \vec { a }## then that will be the opposite direction but as we know an vector always has a particular direction so how to specify the direction of the area vector in this case?
 

Answers and Replies

  • #2
fresh_42
Mentor
Insights Author
2022 Award
17,780
18,926
We all know that the area of a triangle having consecutive sides as ##\vec { a }## and ##\vec { b }## has the area ##\frac { 1 } { 2 } | \vec { a } \times \vec { b } |## but what is the direction of that area vector? I mean if we consider ##\vec { a } \times \vec { b }## that will be one direction and if we consider ##\vec { b } \times \vec { a }## then that will be the opposite direction but as we know an vector always has a particular direction so how to specify the direction of the area vector in this case?
The direction is determined by the right hand rule: thumb ##\vec{a}##, pointer ##\vec{b}##, middle ##\vec{a}\times \vec{b}##.
 
  • #3
Hawkingo
56
2
The direction is determined by the right hand rule: thumb ##\vec{a}##, pointer ##\vec{b}##, middle ##\vec{a}\times \vec{b}##.
I know but I want to ask that why consider ##\vec{a}\times \vec{b}## for the area of the triangle but not ##\vec{b}\times \vec{a}## ? The 2 cross products have different directions.
 
  • #4
fresh_42
Mentor
Insights Author
2022 Award
17,780
18,926
I know but I want to ask that why consider ##\vec{a}\times \vec{b}## for the area of the triangle but not ##\vec{b}\times \vec{a}## ? The 2 cross products have different directions.
Like with all things which can be oriented: make your choice! Why do we write debts as negative numbers and not the other way around? Why do we define ##\int_a^b f(x)dx = F(b)-F(a)## and not the other way around? It's only a convention, and in this case I find it suited compared with the formula behind: ##(\vec{a}\times \vec{b})_1=+ \det\left(\begin{bmatrix}a_2& b_2\\a_3&b_3\end{bmatrix} \right)##, i.e. to start with a positive sign.
 
  • Like
Likes YYtian and Hawkingo

Suggested for: How to specify the direction of an area vector?

  • Last Post
Replies
6
Views
1K
Replies
2
Views
2K
  • Last Post
Replies
12
Views
5K
Replies
1
Views
817
  • Last Post
Replies
10
Views
2K
Replies
1
Views
2K
  • Last Post
Replies
4
Views
1K
  • Last Post
Replies
2
Views
3K
Top