How transfer functions become Bode plots

Click For Summary
The discussion focuses on the mathematical process of converting transfer functions into Bode plots, specifically addressing how to derive gain and phase plots from the transfer function. It clarifies that the Bode plot for gain is created by taking the logarithm of the transfer function in decibels, while the phase is derived from the natural logarithm. The conversation also emphasizes the importance of using a logarithmic scale for frequency to effectively represent characteristics that span several decades. Additionally, there is a correction regarding the slope of first-order functions, which is noted to be 6 dB/octave rather than 3 dB/octave. Understanding these conversions is essential for accurately interpreting Bode plots in electrical circuit analysis.
kostoglotov
Messages
231
Reaction score
6

Homework Statement



I have a question related to taking the logs of transfer functions, getting the individual Bode plots of each subsequent factor, and adding those plots graphically.

I'm working from Fundamentals of Electric Circuits, 5th edt. Let me start with the following screen capture.

NOqNK69.png


imgur link: https://i.imgur.com/NOqNK69.png

Homework Equations



Transfer function standard form:

24GBArb.png


imgur link: https://i.imgur.com/24GBArb.png

The Attempt at a Solution



I can see how taking the natural log spits out the phase, but isn't the Bode plot created from taking the decibel measure, ie, multiply by 20 the log base 10 of the transfer function.

This would produce:

log_{10}(H) + j\phi log_{10}(e)

the imaginary part of that is \phi log_{10}(e), not \phi.

So I thought maybe we use log base 10 to get the decibel magnitude by taking the real part of that, and then get the phase by taking the natural log and taking only the imaginary part.

Which would make sense to me since it is convenient to use decades on the frequency axis for the magnitude vs frequency plot, but I also noticed that the phase vs. frequency plot also uses decades on the frequency axis...

What exactly is the mathematical procedure that bridges the conversion of the transfer function into the two Bode plots; gain vs freq and phase vs freq ?
 
Physics news on Phys.org
Hi there,

It's just a matter of establishing the vertical scale. dB for the amplitude and radians or degrees for the phase is pretty common and legible. the ##\log_{10}## factor isn't practical.

Using a logarithmic scale for the frequency makes sense: in general a characteristic spans serveral decades and the limiting behaviour shows up as a straight asymptote: ##\ \pm##3 dB/octave (or 20 /factor 10) for a first order and double for a second order.
 
  • Like
Likes kostoglotov
BvU - if I am not wrong we have for a first order function a slope of 6dB/octave (not 3dB/octave).
 
  • Like
Likes BvU
LvW said:
BvU - if I am not wrong we have for a first order function a slope of 6dB/octave (not 3dB/octave).
Absolutely correct. Something with power ##\propto## amplitude squared. My bad. See the examples
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 8 ·
Replies
8
Views
4K
  • · Replies 4 ·
Replies
4
Views
8K
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 4 ·
Replies
4
Views
4K
Replies
2
Views
1K
Replies
6
Views
4K
  • · Replies 3 ·
Replies
3
Views
3K