How was this formula derived? (Electromagnetic)

AI Thread Summary
The discussion centers on the derivation of the electric displacement field formula and its application to capacitors. Key equations include the divergence of the electric field and polarization, leading to the definition of the displacement field D as D = ε₀E + P. The relationship between free and bound charge densities is established, highlighting that D is a mathematical construct rather than a measurable quantity. The derivation also involves considering point charges and dipoles to explain charge density and polarization. The conversation concludes with a clarification regarding the correct formula for capacitance, emphasizing the importance of proper notation in the equations.
pbsoftmml
Messages
4
Reaction score
0
I recently learned about Electric displacement field and capacitors, and I have a question that how was the formula derived shown below (blue circle part)?
yQeqpaQ.png

Thanks!
 

Attachments

  • yQeqpaQ.png
    yQeqpaQ.png
    15.3 KB · Views: 4,307
Physics news on Phys.org
These equations come from ## \nabla \cdot E=\frac{\rho_{total}}{\epsilon_o} ## along with ## -\nabla \cdot P=\rho_p ##. Defining ## D=\epsilon_o E+P ##, we can take the divergence of both sides: ## \nabla \cdot D=\epsilon_o \nabla \cdot E+\nabla \cdot P=\rho_{total}-\rho_p=\rho_{free} ##. ## \\ ## Meanwhile, polarization ## P=\epsilon_o \chi E ##, where ## \chi ## is called the dielectric susceptibility, so that ## D=\epsilon_o (1+\chi ) E=\epsilon E=\epsilon_o \epsilon_r E ##. The constant ## K=\epsilon_r =1+\chi ##. We can also write ## P=(K-1)\epsilon_o E ##. ## \\ ## It should be noted that ## D ## is a mathematical construction, and not any real measurable physical quantity. There is no instrument that is able to distinguish polarization charge from free charge. The electric field ## E ## is the real physical parameter here, along with ## P ## which is the polarization (number of dipole moments per unit volume) in the material. ## \\ ## For the case of the parallel plate capacitor, you can use Gauss' law in the form ## \int D \cdot dA=Q_{free}=\sigma_{free}A ## where the Gaussian pillbox has one face in the dielectric material between the plates, and the other face is outside of the capacitor. (Putting it in the conductive plate is also possible, but not good practice, because there is no guarantee that ## D=0 ## in the conductor, just because ## E=0 ## in the conductor). This gives ## K \epsilon_o E A=\sigma_{free}A ##, and ## V=Ed ##, and also ## C=\frac{Q}{V} ##. ## \\ ## Introducing ## D ## can sometimes make the mathematics a little quicker, but the same calculations can always be done working with Gauss' law ## \int E \cdot dA=\frac{Q_{total}}{\epsilon_o} ##, and ## -\nabla \cdot P=\rho_p ##, which gives a Gauss' law for ## P ## in the form ## \int P \cdot dA=-Q_p ##. One important relation that follows from this last result is that the polarization surface charge density ## \sigma_p=P \cdot \hat{n} ##.
 
Last edited:
  • Like
Likes anorlunda and Cryo
pbsoftmml said:
I recently learned about Electric displacement field and capacitors, and I have a question that how was the formula derived shown below (blue circle part)?
View attachment 230188
Thanks!

There is a way to derive this relationship starting from dipoles. First you start with stating the charge density due to point-charge:

##\rho\left(\vec{r}\right)=q\delta^{(3)}\left(\vec{r}-\vec{r_0}\right)##, where ##\delta^{(3)}## is the 3D delta function, ##q## is the charge and ##\vec{r}_0##

is the position of the charge. This formula is self-evident, it is indeed non-zero only at one point, and if you integrate over it you get the actual charge.

Based on this, by considering two closely spaced opposite charges (of same magnitude), you can derive the charge density due to point-electric dipole:

##\rho_p=-\vec{\nabla}.\vec{p}\delta^{(3)}\left(\vec{r}-\vec{r}_p\right)## where ##\vec{p}## is the dipole moment and ##\vec{r}_p##

is the position of the dipole. Next we can introduce the density of the dipoles, i.e. the field that gives the dipole-per-volume:

##\vec{P}=\frac{1}{Vol}\int_{Vol}d^3 r_p\: \vec{p}(\vec{r}_p)\delta^{(3)}\left(\vec{r}-\vec{r}_p\right) ##

where ##Vol## is the volume we are considering. Finally we can choose the separate the charge density into 'free', and charge density bound in dipoles:

##\vec{\nabla}.\varepsilon_0\vec{E}=\rho=\rho_P+\rho_{free}=-\vec{\nabla}.\vec{P}+\rho_{free}##
##\vec{\nabla}.\left(\varepsilon_0\vec{E}+\vec{P}\right)=\rho_{free}##

Where ##\vec{P}## is still the dipole density, which is commonly called polarization. Finally we define field ##\vec{D}=\varepsilon_0\vec{E}+\vec{P}## and we are done. By considering the current due to oscillating point-dipole, you can also introduce ##\vec{P}## into curl-H equation.
 
Charles Link said:
These equations come from ## \nabla \cdot E=\frac{\rho_{total}}{\epsilon_o} ## along with ## -\nabla \cdot P=\rho_p ##. Defining ## D=\epsilon_o E+P ##, we can take the divergence of both sides: ## \nabla \cdot D=\epsilon_o \nabla \cdot E+\nabla \cdot P=\rho_{total}-\rho_p=\rho_{free} ##. ## \\ ## Meanwhile, polarization ## P=\epsilon_o \chi E ##, where ## \chi ## is called the dielectric susceptibility, so that ## D=\epsilon_o (1+\chi ) E=\epsilon E=\epsilon_o \epsilon_r E ##. The constant ## K=\epsilon_r =1+\chi ##. We can also write ## P=(K-1)\epsilon_o E ##. ## \\ ## It should be noted that ## D ## is a mathematical construction, and not any real measurable physical quantity. There is no instrument that is able to distinguish polarization charge from free charge. The electric field ## E ## is the real physical parameter here, along with ## P ## which is the polarization (number of dipole moments per unit volume) in the material. ## \\ ## For the case of the parallel plate capacitor, you can use Gauss' law in the form ## \int D \cdot dA=Q_{free}=\sigma_{free}A ## where the Gaussian pillbox has one face in the dielectric material between the plates, and the other face is outside of the capacitor. (Putting it in the conductive plate is also possible, but not good practice, because there is no guarantee that ## D=0 ## in the conductor, just because ## E=0 ## in the conductor). This gives ## K \epsilon_o E A=\sigma_{free}A ##, and ## V=Ed ##, and also ## C=\frac{Q}{V} ##. ## \\ ## Introducing ## D ## can sometimes make the mathematics a little quicker, but the same calculations can always be done working with Gauss' law ## \int E \cdot dA=\frac{Q_{total}}{\epsilon_o} ##, and ## -\nabla \cdot P=\rho_p ##, which gives a Gauss' law for ## P ## in the form ## \int P \cdot dA=-Q_p ##. One important relation that follows from this last result is that the polarization surface charge density ## \sigma_p=P \cdot \hat{n} ##.
How was the capacitance formula derived then?
 
Cryo said:
There is a way to derive this relationship starting from dipoles. First you start with stating the charge density due to point-charge:

##\rho\left(\vec{r}\right)=q\delta^{(3)}\left(\vec{r}-\vec{r_0}\right)##, where ##\delta^{(3)}## is the 3D delta function, ##q## is the charge and ##\vec{r}_0##

is the position of the charge. This formula is self-evident, it is indeed non-zero only at one point, and if you integrate over it you get the actual charge.

Based on this, by considering two closely spaced opposite charges (of same magnitude), you can derive the charge density due to point-electric dipole:

##\rho_p=-\vec{\nabla}.\vec{p}\delta^{(3)}\left(\vec{r}-\vec{r}_p\right)## where ##\vec{p}## is the dipole moment and ##\vec{r}_p##

is the position of the dipole. Next we can introduce the density of the dipoles, i.e. the field that gives the dipole-per-volume:

##\vec{P}=\frac{1}{Vol}\int_{Vol}d^3 r_p\: \vec{p}(\vec{r}_p)\delta^{(3)}\left(\vec{r}-\vec{r}_p\right) ##

where ##Vol## is the volume we are considering. Finally we can choose the separate the charge density into 'free', and charge density bound in dipoles:

##\vec{\nabla}.\varepsilon_0\vec{E}=\rho=\rho_P+\rho_{free}=-\vec{\nabla}.\vec{P}+\rho_{free}##
##\vec{\nabla}.\left(\varepsilon_0\vec{E}+\vec{P}\right)=\rho_{free}##

Where ##\vec{P}## is still the dipole density, which is commonly called polarization. Finally we define field ##\vec{D}=\varepsilon_0\vec{E}+\vec{P}## and we are done. By considering the current due to oscillating point-dipole, you can also introduce ##\vec{P}## into curl-H equation.
How was the capacitance formula derived then?
 
pbsoftmml said:
How was the capacitance formula derived then?
See paragraph 4 of my post. ## \\ ## Edit: They made a mistake in their last equation of the capacitor=it should be an ## E ## rather than a ## D ## in the numerator, or else a ## D ## in the numerator but no ## K \epsilon_o ## in front.
 
Last edited:
Charles Link said:
See paragraph 4 of my post.
Oh sorry that I did not read through it.
Thank you!
 
pbsoftmml said:
Oh sorry that I did not read through it.
Thank you!
Be sure to see the Edit that I did to post 6.
 
pbsoftmml said:
How was the capacitance formula derived then?

:-) Sorry, I misread your question. I thought you were asking about the relationship between ##\vec{P}## and ##\vec{D}##. Charles Link already did what you were actually asking for.
 
Back
Top