Actually, I think I found a way to do this without using complex analysis.
The answer is pi.
Let f(x) = \frac{1}{1+e^{sin(x)}} and g(x)=f(x-\pi)-\frac{1}{2} = \frac{1}{1+e^{sin(x-\pi)}}-\frac{1}{2}.
I will now show that g(x) is an odd function on the interval \left[-\pi,\pi\right]. For this to be true, I need g(x)=-g(-x), or g(x)+g(-x)=0.
Using the fact that sin(x-pi)=-sin(x) and sin(-x-pi)=sin(x),
g(x)+g(-x)=
=\frac{1}{1+e^{sin(x-\pi)}}-\frac{1}{2}+\frac{1}{1+e^{sin(-x-\pi)}}-\frac{1}{2}
=\frac{1}{1+e^{-sin(x)}}+\frac{1}{1+e^{sin(x)}}-1
=\frac{1+e^{sin(x)}+1+e^{-sin(x)}}{(1+e^{-sin(x)})(1+e^{sin(x)})}-1
=\frac{2+e^{sin(x)}+e^{-sin(x)}}{1+e^{sin(x)}+e^{-sin(x)}+1}-1
=1-1=0
Therefore, g(x) is odd, which implies that \int_{0}^{2\pi}g(x+\pi) dx=0.
Because f(x)=g(x+\pi)+\frac{1}{2},
\int_{0}^{2\pi}f(x) dx simply becomes \int_{0}^{2\pi}\frac{1}{2} dx, which is obviously pi.