ironspud
- 10
- 0
Hi,
Just hoping someone could check my work and point out any errors, if any.
Consider the sequence {a_n} defined by a_n=\frac{n}{2n+\sqrt{n}}. Prove that \lim_{x\to\infty}a_n=\frac{1}{2}. (Do NOT use any of the "limit rules" from Section 2.2.)
A sequence a_n is said to converge to a real number A iff for each \epsilon>0 there exists a positive integer n^* such that \lvert a_n-A\rvert<\epsilon for all n\geq n^*.
Proof:
Let \epsilon>0.
Let n^*\in\mathbb{N} such that n^*>[\frac{1}{2}(\frac{1}{\epsilon}-1)]^2.
If n\geq n^*, then
\lvert a_n-A\rvert
=\lvert\frac{n}{2n+\sqrt{n}}-\frac{1}{2}\rvert
=\lvert\frac{2n-2n-\sqrt{n}}{2(2n+\sqrt{n})}\rvert
=\lvert\frac{-\sqrt{n}}{2(2n+\sqrt{n})}\rvert
=\lvert\frac{-n}{\sqrt{n}[2(2n+\sqrt{n})]}\rvert
=\lvert\frac{-n}{\sqrt{n}(4n+2\sqrt{n})}\rvert
=\lvert\frac{-n}{4n\sqrt{n}+2n}\rvert
=\lvert\frac{-n}{2n(2\sqrt{n}+1)}\rvert
=\lvert\frac{-1}{2(2\sqrt{n}+1)}\rvert
=\frac{1}{2(2\sqrt{n}+1)}
\leq\frac{1}{2\sqrt{n}+1}
<\frac{1}{2\sqrt{[\frac{1}{2}(\frac{1}{\epsilon}-1)]^2}+1}
=\frac{1}{2\lvert[\frac{1}{2}(\frac{1}{\epsilon}-1)]\rvert+1}
=\frac{1}{2[\frac{1}{2}(\frac{1}{\epsilon}-1)]+1}
=\frac{1}{(\frac{1}{\epsilon}-1)+1}
=\frac{1}{\frac{1}{\epsilon}}
=\epsilon.
Just hoping someone could check my work and point out any errors, if any.
Homework Statement
Consider the sequence {a_n} defined by a_n=\frac{n}{2n+\sqrt{n}}. Prove that \lim_{x\to\infty}a_n=\frac{1}{2}. (Do NOT use any of the "limit rules" from Section 2.2.)
Homework Equations
A sequence a_n is said to converge to a real number A iff for each \epsilon>0 there exists a positive integer n^* such that \lvert a_n-A\rvert<\epsilon for all n\geq n^*.
The Attempt at a Solution
Proof:
Let \epsilon>0.
Let n^*\in\mathbb{N} such that n^*>[\frac{1}{2}(\frac{1}{\epsilon}-1)]^2.
If n\geq n^*, then
\lvert a_n-A\rvert
=\lvert\frac{n}{2n+\sqrt{n}}-\frac{1}{2}\rvert
=\lvert\frac{2n-2n-\sqrt{n}}{2(2n+\sqrt{n})}\rvert
=\lvert\frac{-\sqrt{n}}{2(2n+\sqrt{n})}\rvert
=\lvert\frac{-n}{\sqrt{n}[2(2n+\sqrt{n})]}\rvert
=\lvert\frac{-n}{\sqrt{n}(4n+2\sqrt{n})}\rvert
=\lvert\frac{-n}{4n\sqrt{n}+2n}\rvert
=\lvert\frac{-n}{2n(2\sqrt{n}+1)}\rvert
=\lvert\frac{-1}{2(2\sqrt{n}+1)}\rvert
=\frac{1}{2(2\sqrt{n}+1)}
\leq\frac{1}{2\sqrt{n}+1}
<\frac{1}{2\sqrt{[\frac{1}{2}(\frac{1}{\epsilon}-1)]^2}+1}
=\frac{1}{2\lvert[\frac{1}{2}(\frac{1}{\epsilon}-1)]\rvert+1}
=\frac{1}{2[\frac{1}{2}(\frac{1}{\epsilon}-1)]+1}
=\frac{1}{(\frac{1}{\epsilon}-1)+1}
=\frac{1}{\frac{1}{\epsilon}}
=\epsilon.