matematikuvol
- 190
- 0
Hypergeometric function is defined by:
_2F_1(a,b,c,x)=\sum^{\infty}_{n=0}\frac{(a)_n(b)_n}{n!(c)_n}x^n
where ##(a)_n=a(a+1)...(a+n-1)##...
I'm confused about this notation in case, for example, ##_2F_1(-n,b,b,1-x)##.
Is that
_2F_1(-n,b,b,1-x)=\sum^{\infty}_{n=0}\frac{(-n)_n}{n!}(1-x)^n
or
_2F_1(-n,b,b,1-x)=\sum^{\infty}_{k=0}\frac{(-n)_k}{k!}(1-x)^k
and how to summate ##_2F_1(-n,b,b,1-x)##?
And one more question. Are the generalised hypergeometric function and confluent hypergeometric function same function?
_2F_1(a,b,c,x)=\sum^{\infty}_{n=0}\frac{(a)_n(b)_n}{n!(c)_n}x^n
where ##(a)_n=a(a+1)...(a+n-1)##...
I'm confused about this notation in case, for example, ##_2F_1(-n,b,b,1-x)##.
Is that
_2F_1(-n,b,b,1-x)=\sum^{\infty}_{n=0}\frac{(-n)_n}{n!}(1-x)^n
or
_2F_1(-n,b,b,1-x)=\sum^{\infty}_{k=0}\frac{(-n)_k}{k!}(1-x)^k
and how to summate ##_2F_1(-n,b,b,1-x)##?
And one more question. Are the generalised hypergeometric function and confluent hypergeometric function same function?
Last edited: