MHB I<0? Evaluate New Year Challenge Integral

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Challenge Year
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $$I=\int_{2013}^{2014} \frac{\sin x}{x}\,dx$$. Determine with reason if $I<0,\,I=0$ or $I>0$?

This challenge is one of my top favorite problems that can be cracked using purely elementary method! (Sun):)
 
Mathematics news on Phys.org
anemone said:
Let $$I=\int_{2013}^{2014} \frac{\sin x}{x}\,dx$$. Determine with reason if $I<0,\,I=0$ or $I>0$?

This challenge is one of my top favorite problems that can be cracked using purely elementary method! (Sun):)

converting to degree we have lower limit around $136.90^\circ$ and upper limit around $193.70^\circ$
now from $136.90^\circ$ to $180^\circ$ degrees $\sin$ is $\ge 0$ and from $180^\circ$ to 1$93.70^\circ$ . it is $\le 0$. They come in the same cycle as difference is 1 radian
integral from $(180-13.70)^\circ$ i.e $166.30^\circ$ to $193.70^\circ$ shall be zero provided denominator is constant. as denominator is decreasing the integral from $166.30^\circ$ to $193.70^\circ$ is positive and adding another positive quantity that is integral from $136.90^\circ$ to $166.30^\circ$ which is positive so sum $I \gt 0$
 
Thanks kaliprasad for participating.
Your solution is quite ingenious, and please note that the value $136.90^\circ$ should be $136.40^\circ$.

Solution of other:
Split the definite integral into two part, with $a$ being the zero at about $2013.75$, note that we have:

$$\int_{2013}^{a} \frac{\sin x}{x}\,dx>\int_{2013}^{a} \frac{\sin x}{2014}\,dx$$

and

$$\int_{a}^{2014} \frac{\sin x}{x}\,dx>\int_{a}^{2014} \frac{\sin x}{2013}\,dx$$

So adding them up yields

$$\begin{align*}I=\int_{2013}^{a} \frac{\sin x}{x}\,dx+\int_{a}^{2014} \frac{\sin x}{x}\,dx&>\int_{2013}^{a} \frac{\sin x}{2014}\,dx+\int_{a}^{2014} \frac{\sin x}{2013}\,dx\\&>\frac{\cos 2013}{2014}-\frac{\cos 2014}{2013}+\frac{\cos a}{2013}-\frac{\cos a}{2014}\\&>0\end{align*}$$
 
anemone said:
Thanks kaliprasad for participating.
Your solution is quite ingenious, and please note that the value $136.90^\circ$ should be $136.40^\circ$.

oops my mistake. false start in 2016.
 
kaliprasad said:
oops my mistake. false start in 2016.

Please don't worry about it...and it was after all an honest mistake, I understand it completely.:)
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top