I developing a theory of a general shift function sequence transform

bqllpd
Messages
2
Reaction score
0
I need help developing a theory of a general "shift function sequence transform"

I'm new here and this is my first post. In 1999 I read part of "The Book of Numbers" by John Conway and Richard Guy and came across a section titled "Jackson's difference fans". In their book, there's no mention of the math that decribes this fanning process, so over the past few years, two friends of mine and I developed the mathematics for it. For some reason, they didn't want their name on the paper and I'm not really getting help with it anymore, but I'm now trying to discover a general method for describing any sequence transform by using what I call a "shift function sequence transform".

Lets's see if this $\LaTeX$ posts right...
Let $\textbf I$ denote the Identity operator so that $\textbf Ia_n=a_n$ where $a_n$ is a complex number and $n$ is an integer. Let $\textbf E$ denote the shift operator such that $\textbf Ea_n=a_n+1$ and $\textbf E^ka_n=a_{n+k}$

Define $f(\textbf E)a_n$ be a shift function of the elements of the sequence. E few examples are mentioned in another group I belong to in yahoo called Math for Fun and the post I wrote a few days ago can be found at http://groups.yahoo.com/group.mathforfun

I'm sorry I had to post an outside group here. I just don't have enough time to retype everything because I have an hour time limit each day.

If $a_n$ is the original sequence and $f(\textbf E)a_n=b_n$, then $f(\textbf E)b_n=f^2(\textbf E)a_n$ If this is continued, then the $k$-th shift function of the sequence is $f^k(\textbf E)a_n$ Now define $Ta_n$ as the first elements of each new sequence produced by $f^k(\textbf E)$ for each $k$ so that $Ta_n=f^n(\textbf E)a_0$

This is where I start to have problems. I just don't know what the notation would be in general if this same "fanning" process is repeated. I know what it is if $f(\textbf E)=\textbf E-\textbf I$ and $f(\textbf E)=\textbf E+\textbf I$ as well as $f(\textbf E)=\textbf E/\textbf I$ and $f(\textbf E)=\textbf E*\textbf I$ but I don't know a general rule for any shift function and would appreciate it if anyone can help.

Regards,
Jason
 
Mathematics news on Phys.org
Jason, to do \LaTeX here, you have to use the [ tex ] and [ /tex ] markup constructs. the dollar signs don't do zilch.
 
Last edited:
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Back
Top