I have hard time understanding Such That

  • Thread starter Thread starter BarringtonT
  • Start date Start date
  • Tags Tags
    Hard Time
BarringtonT
Messages
9
Reaction score
0
I have hard time understanding "Such That"

{x\inZ|x=2m+1, m\inZ}

Is this saying that x is apart of all integers and because of that x=2m+1 where m is all so apart of all integers.

if not

Is the first part x\inZ because of the second part x=2m+1, m\inZ

or

Is second part x=2m+1, m\inZ because of the first x\inZ
 
Physics news on Phys.org
The formula asking you to take the set of all integers x such that x is identical to 2m + 1, where M itself is an integer. More simply, x is a member of the set if x an odd integer.

I'm not sure I understand your questions. By 'apart' did you mean 'a part'? If so, it might be better to say "x is an intger". More importantly, there's no implication that x should be odd because x is an integer. SUCH THAT is not a causal connective.

Indeed, one could have specified the same set without the opening clause that x is an integer, since this in fact follows from the fact that x is an odd integer.
 
"Such that" is used before one or more qualifiers that limit what we're discussing.

Here are some examples.

1. {x ##\in## Z} - this set represents all of the integers, negative, zero, and positive.
2. {x ##\in## Z | x > 2} - The bar (|) can be read as "such that." The inequality limits the set so that we're now talking about only the integers larger than 2.

3. {x ##\in## Z | x > 2 and x < 7} - We're further limiting the set, so now we're considering only {3, 4, 5, 6}. This could also be written as {x ##\in## Z | 2 < x < 7}, and means exactly the same thing.
4. {x ##\in## Z | x > 2 and x < 3} - We have limited things so much that there are no members in the set, because there are no integers that are both larger than 2 and smaller than 3.
 
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Thread 'Detail of Diagonalization Lemma'
The following is more or less taken from page 6 of C. Smorynski's "Self-Reference and Modal Logic". (Springer, 1985) (I couldn't get raised brackets to indicate codification (Gödel numbering), so I use a box. The overline is assigning a name. The detail I would like clarification on is in the second step in the last line, where we have an m-overlined, and we substitute the expression for m. Are we saying that the name of a coded term is the same as the coded term? Thanks in advance.
Back
Top