It sounds like you're having an issue a lot of people have in high school.
Mathematics is extremely sensitive to details. Langauge often fails to communicate those details clearly, so we have (several) special notation(s). And even the notations are just suggestions at what's being talked about... depending on the branch, the notation isn't always so clear either.
Mathematics is not a science. It's not about "asking questions". But equally so, it's not about "just works" either. At its core, it's just logic, taking a set of assumptions and definitions and leading up to conclusions and theorems based solely on a logical argument between them.
Here's a really simple "classic" proof to demonstrate. It's something that isn't taught in high shcool. It's not hard, but I hopefully can illustrate what kind of mathematics a lot of other people on this board enjoy:
Theorem. There are an infintie number of prime integers.
Proof. We only have two possibilities. Either the primes are finite or the primes are infinite. This proof shows that there are infinite primes by showing the alternative -- the existence of only a finite number of primes -- leads to a logical contradiction.
Suppose there is a finite number of primes. We can always find the largest of a finite number of integers, so let n be the greastest prime integer. Furthermore, let k be one greater than the product of all integers from 1 to n (k = 1 * 2 * 3 * ... * n + 1). Dividing k by any integer between 2 and n leaves a remainder of 1. Therefore, k only has two divisors, 1 and k, and thus, k is prime. But k is greater than n, which contradicts our assumption that n was the greatest prime integer. Thus, our proof stands.
It's unfortunate that math is often ridiculously useful in other areas of study. In applied mathematics, the line of reasoning isn't as useful as the final theorem, so the logical side of mathematics is thrown away. Instead, students simply memorize sets of rules which have been created and proven by others. This is especially the case in calculus, where you might use a table to calculate a strange derivative or apply a law (such as the chain rule) without really understanding why it's true.
In high school especially, the "elegant" and "beautiful" face of mathematics is almost entirely ignored. The math you take there is the most you'll need if you're going into business or something. The good stuff is reserved for scientists and engineers and the *best* stuff is exclusive to mathematicians (because it is too unapplicable or too abstract for other fields).
Try looking around these boards. You'll find a lot of concepts you've never seen before and maybe you might find something interesting.