Alright, I tried to work it out, but it looks like I got a sign error somewhere. I wrote everything out in more detail than was probably necessary, so where this occurs can stand out.
sourena said:
No, I don't have problem with these equations, but I have problem to calculate this equation from them:
δR=Rab δgab+gab δgab -∇a ∇b δgab
Okay, so we at least have a starting point we can agree on:
\delta R = R_{ab} \delta g^{ab} + g^{ab} \delta R_{ab}
\delta R_{ab} &= [\nabla_c \delta \Gamma^c_{ab} - \nabla_b \delta \Gamma^c_{c a}]
As in wikipedia noting that \delta \Gamma^\lambda_{\mu\nu}\, is actually the difference of two connections, it should transform as a tensor. Therefore, it can be written as
\delta \Gamma^\lambda_{\mu\nu}=\frac{1}{2}g^{\lambda d}\left(\nabla_\mu\delta g_{d\nu}+\nabla_\nu\delta g_{d\mu}-\nabla_d\delta g_{\mu\nu} \right)
and substituting in the equation, after playing with it in excruciating detail one finds:
\begin{align*}<br />
\delta R_{ab} &= [\nabla_c \delta \Gamma^c_{ab} - \nabla_b \delta \Gamma^c_{c a}] \\<br />
&= [\nabla_c \frac{1}{2}g^{c d}\left(\nabla_a\delta g_{db}+\nabla_b\delta g_{da}-\nabla_d\delta g_{ab} \right)<br />
-\nabla_b \frac{1}{2}g^{c d}\left(\nabla_c\delta g_{da}+\nabla_a\delta g_{dc}-\nabla_d\delta g_{ca} \right)] \\<br />
&= \frac{1}{2}g^{c d}[\left(\nabla_c\nabla_a\delta g_{db}+\nabla_c\nabla_b\delta g_{da}-\nabla_c\nabla_d\delta g_{ab} \right)<br />
-\left(\nabla_b\nabla_c\delta g_{da}+\nabla_b\nabla_a\delta g_{dc}-\nabla_b\nabla_d\delta g_{ca} \right)] <br />
\end{align*}
swap the derivative order on the fourth term
http://en.wikipedia.org/wiki/Covariant_derivative#Examples
\nabla_b\nabla_c\delta g_{da} = \nabla_c\nabla_b\delta g_{da} + R^{e}{}_{dbc} \delta g_{ea} + R^{e}{}_{abc} \delta g_{de}
\begin{align*}<br />
g^{ab}\delta R_{ab} &= g^{ab} \frac{1}{2}g^{c d}[\left(\nabla_c\nabla_a\delta g_{db}-\nabla_c\nabla_d\delta g_{ab} \right)<br />
-\left(R^{e}{}_{dbc} \delta g_{ea} + R^{e}{}_{abc} \delta g_{de} + \nabla_b\nabla_a\delta g_{dc}-\nabla_b\nabla_d\delta g_{ca} \right)] \\<br />
&= \frac{1}{2}g^{c d}[\left(\nabla_c\nabla^b \delta g_{db}-\nabla_c\nabla_d g^{ab} \delta g_{ab} \right)<br />
-\left(R^{e}{}_d{}^a{}_c \delta g_{ea} + R^{eb}{}_{bc} \delta g_{de} + \nabla_b\nabla^b \delta g_{dc}-\nabla^a \nabla_d\delta g_{ca} \right)] \\<br />
<br />
&= \frac{1}{2}[\left(\nabla^d\nabla^b \delta g_{db}-\nabla^d\nabla_d g^{ab} \delta g_{ab} \right)<br />
-\left(R^{eca}{}_c \delta g_{ea} + R^{eb}{}_b{}^d \delta g_{de} + \nabla_b\nabla^b g^{c d} \delta g_{cd} -\nabla^a \nabla^c\delta g_{ca} \right)] \\<br />
<br />
&= \frac{1}{2}[\left(\nabla^d\nabla^b \delta g_{db}-\nabla^d\nabla_d g^{ab} \delta g_{ab} \right)<br />
-\left(R^{ea}\delta g_{ea} - R^{de} \delta g_{de} + \nabla_b\nabla^b g^{c d} \delta g_{cd} -\nabla^a \nabla^c\delta g_{ca} \right)] \\<br />
<br />
&= \nabla^a\nabla^b \delta g_{ab} - g^{ab} \nabla^c\nabla_c \delta g_{ab}<br />
\end{align*}<br />
Hmm...
maybe there isn't an error. Does
\delta g_{ab} = - \delta g^{ab} ?
I'm too tired to check right now.