I want to know more about series convergence (elementary)

1MileCrash
Messages
1,338
Reaction score
41
I am able to use a variety of methods to check to see if a series converges, and I can do it well. However, it's not something I feel like I've intuitively conquered.

I don't understand why the series 1/x diverges. I mean, I do, in that I know the integral test will give me the limit as x -> infinity of ln|x| which grows without bound, and I understand why the integral test makes sense, but I don't get it.

Why does it matter how quickly the function approaches 0 on an infinite plane?

Is there really an infinite area under the curve 1/x, but a finite one under 1/x^2? Why? What's so different about the two?

Does someone understand my concern? Is there some link between 1/x being the "standard" for whether or not a series converges and the behavior of ln x (increases extremely slowly?)
 
Mathematics news on Phys.org
I think I understand your concern. But I'm afraid there is no easy answer. You find it not intuitively true that the series 1/n diverges but 1/n2 does not. I don't think I can explain to you why, except to say that they do.

However, I can give you an intuitive proof why 1/n converges:

1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8} +\frac{1}{9}+\frac{1}{10}+...

\geq 1+\frac{1}{2}+\frac{1}{4}+\frac{1}{4}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8} +\frac{1}{16}+\frac{1}{16}+...

\geq 1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + ...

So this shows why our series diverges. We can even use this to find how fast the series diverges.

Likewise, one can indeed show that 1/x has infinite area and 1/x2 has finite area.

I know it isn't intuitive, but it's something you need to get used to.
 
Last edited:
Have you come across formal methods for convergence involving norms or are you in the early stages of your degree?
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top