Ideal Gas Exercise: Homework Statement & Solution

AI Thread Summary
A cylinder with a frictionless piston contains gas initially at 300K and 6.0 * 10-3 m3, which is heated to 400K. The initial energy was calculated as 900J, and the second energy as 1200J, leading to a work calculation of 300J. However, the correct work done by the gas is 200J, as the change in internal energy does not account for heat transfer. The correct approach involves using the equation w = -PextΔV, where Pext is the constant external pressure, simplifying the calculation. Understanding this integral approach clarifies the relationship between work, heat transfer, and internal energy changes.
Perrin
Messages
14
Reaction score
0

Homework Statement



A cylinder with a frictionless piston is placed horizontally in an atmosphere pressure 1 * 105 N/m2. A gas in the cylinder is initially at a temperature of 300K with a volume of 6.0 * 10-3 m3. Then the gas is heated slowly to 400K. How much work is done by the gas in the process?

Homework Equations



Ideal Gas equations:

p*V/T = constant

p*V = NKT = nRT

Ek (average) = (3/2) * kT

Ek (total) = (3/2) * NkT = (3/2)pV

The Attempt at a Solution



At first I calculated the initial energy as:
E1 = (3/2)pV = (3/2)*(1 * 105) * (6.0 * 10-3) = 900J

Then, assuming the pressure is constant, I said:

pV1/T1 = pV2/T2

V2 = V1*T2 / T1

V2 = 6.0 * 10-3 * 400 / 300 = 8*10-3

Thus, the second energy:

E2 = (3/2)*105*8*10-3 = 1200J

And the work:
W = E2 - E1 = 1200 - 900 = 300J.

Now, in the answer to the question, it says the work is not 300J, but 200J.
Can someone enlighten me about my mistake?

Thanks.
 
Physics news on Phys.org
You calculated the change in internal energy of the gas (ΔE). ΔE = w + q, so you are ignoring q, the amount of heat transferred during the process. You should use this equation for work instead:

w = -\int_{v_1}^{v_2}{P_{ext}dV}
 
So, I could also calculate:

w = ΔE - q ?

And could you please explain to me how to use the equation you wrote? What's Pext? How do you integrate it? Sorry, I'm not very good with integrals...

Thanks for the quick reply!
 
Pext is the external pressure. If the external pressure stays constant during your process, P does not vary with V and you can pull it out of the integral to get the simpler relation w = -PextΔV. If P varies as the volume changes, you have to do the integration by finding an expression for P in terms of V.
 
Thanks, I finally understand :D
 
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanged mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top