Ideal Gas Law Lab: Finding R with PV = nRT

Click For Summary
The discussion focuses on determining the gas constant R using the Ideal Gas Law in a lab setting. In the first part, pressure is graphed against temperature, yielding a slope related to nR/V, where n is the number of moles and V is the volume. The second part involves plotting pressure against inverse volume, resulting in a slope of nRT, with T held constant. To find R, the user needs to measure the gas's mass to determine n, as well as maintain consistent volume and temperature during the experiments. Accurate measurements and the relationship between slope and the gas constant are crucial for successful calculations.
mirandasatterley
Messages
61
Reaction score
0
For the first part of my lab, I have a graph with pressure(atm) as a function of temperature(K).

For the second part of my lab, I have a graph with pressure(atm) as a function of inverse volume(mL^-1)

For both of these, i am supposed to find the value for R, the gas constant.

So far far part a i have: PV = nRT
P = (nR/V)T (in the form y = mx +b),
So the slope of my graph is nR/V
I also know that n is kept constant, because it was a closed system and 1mol= 22.4L. And that the initial volume is 20mL.
And i think I should I pick two points on the line to find the slope and set that equal to nR/V.

And this is where I'm having trouble, i get some value for the slope, m, so
m = nR/V
R = mV/n, here I'm confused at how to find V and n in order to solve for R.

For part b; PV = nRT
P = (nRT) 1/V
So the slope of my graph is nRT
I did the same thing as part one;
m = nRT
R = m/nT, since T was not chnged, I can do that part, but once again, I am confused by finding n.
 
Physics news on Phys.org
mirandasatterley said:
For the first part of my lab, I have a graph with pressure(atm) as a function of temperature(K).

For the second part of my lab, I have a graph with pressure(atm) as a function of inverse volume(mL^-1)

For both of these, i am supposed to find the value for R, the gas constant.

So far far part a i have: PV = nRT
P = (nR/V)T (in the form y = mx +b),
So the slope of my graph is nR/V
I also know that n is kept constant, because it was a closed system and 1mol= 22.4L. And that the initial volume is 20mL.
And i think I should I pick two points on the line to find the slope and set that equal to nR/V.

And this is where I'm having trouble, i get some value for the slope, m, so
m = nR/V
R = mV/n, here I'm confused at how to find V and n in order to solve for R.

For part b; PV = nRT
P = (nRT) 1/V
So the slope of my graph is nRT
I did the same thing as part one;
m = nRT
R = m/nT, since T was not chnged, I can do that part, but once again, I am confused by finding n.
As I understand your lab experiment you are doing the following:

1) You keep Volume constant, and take measurements of Pressure at various Temperatures. A plot of P as a function of T should be a straight line P = nRT/V with slope m = nR/V and y intercept b=0.

2) Keeping T constant, take measurements of Volume at various Pressures. A plot of P as a function of 1/V should be a straight line: P = nRT(1/V) with slope m = nRT and y intercept b=0.

In 1) you determine V by measurement. You just have to keep n and V constant while you change the temperature.

In 2) you just have to keep n and T constant as you change the volume.

To find n, you have to weigh the gas. If you use the fact that 1 mole occupies 22.414 L at STP you are indirectly using the known value for R:

R = PV/nT = 101325*.022414/1*273.15 = 8.3145 J/mol K

AM
 
Last edited:
Thread 'Correct statement about size of wire to produce larger extension'
The answer is (B) but I don't really understand why. Based on formula of Young Modulus: $$x=\frac{FL}{AE}$$ The second wire made of the same material so it means they have same Young Modulus. Larger extension means larger value of ##x## so to get larger value of ##x## we can increase ##F## and ##L## and decrease ##A## I am not sure whether there is change in ##F## for first and second wire so I will just assume ##F## does not change. It leaves (B) and (C) as possible options so why is (C)...

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
4K
Replies
14
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
4
Views
2K
  • · Replies 9 ·
Replies
9
Views
852
Replies
18
Views
2K