Ideal Gas Partition: Final Temp & Total Energy Change

AI Thread Summary
The discussion centers on two ideal gases separated by a partition, with specific parameters for each gas. The final temperature of the system is determined to be the average of the two initial temperatures when the number of molecules and volumes are equal. For part b, the total change in the quantity H is derived from the differential equation dH=dU+Vdp, while part c involves evaluating the change in quantity A using dA=(dU+pdV)/T. The user has successfully calculated the final temperature but is seeking assistance with the evaluations for parts b and c. The focus remains on understanding the thermodynamic changes in the system.
oxman
Messages
19
Reaction score
0
Two ideal gases are separated by a partition which does not allow molecules to pass from one volume to the other. Gas 1 has: N1, V1, T1, Cv1 for the number of molecules, volume it occupies, temperature in kelvin, and specific heat per molecule at constant volume respectively. Gas 2 has: N2, V2, T2, Cv2. The two gases are in thermal contact and reach a final temperature

a) find the final temperature and the total change in energy of the combined system. Check your answer for the final temperature when N1=N2, V1=V2. Cv1=Cv2

b)Evaluate the total change ina quantity H whose differential change is dH=dU+Vdp for each component and for the entire system

c)evaluate the total change in a quantity A whose differential change is dA=(dU+pdV)/T for each component and for the entire system

I am having trouble with b and c

U=NVCvdT

I already solved for the final temperature for part a, and when evaluated at equal N and V i got Tf=(T2+T1)/2
 
Physics news on Phys.org
****?
 
Thread 'Gauss' law seems to imply instantaneous electric field'
Imagine a charged sphere at the origin connected through an open switch to a vertical grounded wire. We wish to find an expression for the horizontal component of the electric field at a distance ##\mathbf{r}## from the sphere as it discharges. By using the Lorenz gauge condition: $$\nabla \cdot \mathbf{A} + \frac{1}{c^2}\frac{\partial \phi}{\partial t}=0\tag{1}$$ we find the following retarded solutions to the Maxwell equations If we assume that...
Maxwell’s equations imply the following wave equation for the electric field $$\nabla^2\mathbf{E}-\frac{1}{c^2}\frac{\partial^2\mathbf{E}}{\partial t^2} = \frac{1}{\varepsilon_0}\nabla\rho+\mu_0\frac{\partial\mathbf J}{\partial t}.\tag{1}$$ I wonder if eqn.##(1)## can be split into the following transverse part $$\nabla^2\mathbf{E}_T-\frac{1}{c^2}\frac{\partial^2\mathbf{E}_T}{\partial t^2} = \mu_0\frac{\partial\mathbf{J}_T}{\partial t}\tag{2}$$ and longitudinal part...
Back
Top