Identical particles in a 2D potential well

Hannisch
Messages
114
Reaction score
0

Homework Statement


So, I'm asking for a bit of help before I confuse myself completely.

The question statement is:

Consider a two-dimensional potentialbox

V(x,y) = 0 if 0 \leq x \leq a, 0 \leq y \leq 2a
and infinity otherwise.

a) Determine the energy eigenstates and energy eigenvalues of a particle in this box. The solutions of the 1D potential well can be considered as known.

b) If we place 3 identical bosons in the box, what will the ground state energy be if we disregard interaction between the bosons.

c) Same as in b), but for 3 identical spin 1/2 fermions.

d) Write down the complete wavefunction (with both spatial and spin parts) for the ground state if two identical fermions with spin 1/2 and without interaction are put in the box.

e) Same as d) but for 3 identical fermions with spin 1/2.

Homework Equations



1D potential well equations:

\psi_n (x) = \sqrt{\frac{2}{a}} {sin(\frac{n \pi x}{a})}

E_n = \frac{n^2 \pi^2 \hbar^2}{2ma^2}


The Attempt at a Solution



Okay, for a) I did a variable separation and ended up with

\psi_{n_{x}n_{y}} (x) = \frac{\sqrt{2}}{a} sin(\frac{n_x \pi x}{a})sin(\frac{n_y \pi y}{2a})

E_{n_{x}n_{y}} = \frac{\pi^2 \hbar^2}{2ma^2}(n_{x}^2 + \frac{n_{y}^2}{4})

Then in b)

Since there are three bosons they can all be in the same state, and the lowest state would be for n_x=n_y=1, so the total energy would be

E_{tot} = 3E_{1,1} = \frac{15 \pi^2 \hbar^2}{8ma^2}

and for c)

Again, the lowest energy will be for n_x=n_y=1, but since only two spin 1/2 fermions can be in that energy at the same time, I'll also have a third particle, which I'm thinking will be in n_x= 1, n_y=2, since this will give me a lower energy than n_x= 2, n_y=1.

So then, the total energy would be:

E_{tot} = 2E_{1,1}+E_{1,2} = \frac{10 \pi^2 \hbar^2}{8ma^2} + \frac{8 \pi^2 \hbar^2}{8ma^2} = \frac{9 \pi^2 \hbar^2}{4ma^2}

And that's where I'm not completely sure if my reasoning is completely correct, and where I want to confirm. I haven't started d) and e) yet, but I want to confirm this first, and I'm going to continue doing the rest with the assumptions I have above until I get a reply or figure something else out.

Thank you for any help that you may provide!
 
Last edited:
Physics news on Phys.org
Looks fine!
 
Thank you :D

Well then, I actually need some help with d) as well, it turns out.

Because I know, from c), that the two fermions will be in n_x=n_y=1, so that the wavefunctions will be

\psi_{1,1}^{(1)}(x_1,y_1) = \frac{\sqrt{2}}{a}sin(\frac{\pi x_1}{a})sin(\frac{\pi y_1}{2a})

\psi_{1,1}^{(2)}(x_2,y_2) = \frac{\sqrt{2}}{a}sin(\frac{\pi x_2}{a})sin(\frac{\pi y_2}{2a})

Where the exponent on the psi refers to the particle. And this is because if I solve the Schroedinger equation for two particles I can do a variabel (particle) separation as well, and see that

\psi (x_1,y_1,x_2,y_2) = \psi^{(1)} (x_1,y_1) \psi^{(2)} (x_2,y_2)

So then

\psi (x_1,y_1,x_2,y_2) = \psi_{1,1}^{(1)}(x_1,y_1) \psi_{1,1}^{(2)}(x_2,y_2) = \frac{2}{a^2}sin(\frac{\pi x_1}{a})sin(\frac{\pi y_1}{2a})sin(\frac{\pi x_2}{a})sin(\frac{\pi y_2}{2a})

I also see that this is a symmetric function when exchanging the particles (if this is indeed correct, which I can't honestly say I'm 100% sure about), so I know that they have to be in the singlet spin state.

How on Earth do I write this? Can I just write it as

\psi (x_1,y_1,x_2,y_2)\left| singlet \right\rangle

And can I put in what the singlet state is? I mean, I know it's

\left| singlet \right\rangle = \frac{1}{\sqrt{2}} (\left| \uparrow \downarrow \right\rangle - \left| \downarrow \uparrow \right\rangle)

so can I put this into the equation?
 
Yes, the complete state is a Cartesian product of the spatial state and the spin state. You typically just write them next to each other as you did or perhaps stick a symbol between them indicating it's a Cartesian product. Do you have any examples in your textbook?
 
I honestly can't find any, the closest I came to it was from my lecture notes, where my teacher wrote

|spatial>|spin>

in an example.
 
It's funny. I just checked two of my books, and I can't find an example either. I'd just do what your professor did and write the two pieces next to each other. It's pretty clear what it means.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top