Hannisch
- 114
- 0
Homework Statement
So, I'm asking for a bit of help before I confuse myself completely.
The question statement is:
Consider a two-dimensional potentialbox
V(x,y) = 0 if 0 \leq x \leq a, 0 \leq y \leq 2a
and infinity otherwise.
a) Determine the energy eigenstates and energy eigenvalues of a particle in this box. The solutions of the 1D potential well can be considered as known.
b) If we place 3 identical bosons in the box, what will the ground state energy be if we disregard interaction between the bosons.
c) Same as in b), but for 3 identical spin 1/2 fermions.
d) Write down the complete wavefunction (with both spatial and spin parts) for the ground state if two identical fermions with spin 1/2 and without interaction are put in the box.
e) Same as d) but for 3 identical fermions with spin 1/2.
Homework Equations
1D potential well equations:
\psi_n (x) = \sqrt{\frac{2}{a}} {sin(\frac{n \pi x}{a})}
E_n = \frac{n^2 \pi^2 \hbar^2}{2ma^2}
The Attempt at a Solution
Okay, for a) I did a variable separation and ended up with
\psi_{n_{x}n_{y}} (x) = \frac{\sqrt{2}}{a} sin(\frac{n_x \pi x}{a})sin(\frac{n_y \pi y}{2a})
E_{n_{x}n_{y}} = \frac{\pi^2 \hbar^2}{2ma^2}(n_{x}^2 + \frac{n_{y}^2}{4})
Then in b)
Since there are three bosons they can all be in the same state, and the lowest state would be for n_x=n_y=1, so the total energy would be
E_{tot} = 3E_{1,1} = \frac{15 \pi^2 \hbar^2}{8ma^2}
and for c)
Again, the lowest energy will be for n_x=n_y=1, but since only two spin 1/2 fermions can be in that energy at the same time, I'll also have a third particle, which I'm thinking will be in n_x= 1, n_y=2, since this will give me a lower energy than n_x= 2, n_y=1.
So then, the total energy would be:
E_{tot} = 2E_{1,1}+E_{1,2} = \frac{10 \pi^2 \hbar^2}{8ma^2} + \frac{8 \pi^2 \hbar^2}{8ma^2} = \frac{9 \pi^2 \hbar^2}{4ma^2}
And that's where I'm not completely sure if my reasoning is completely correct, and where I want to confirm. I haven't started d) and e) yet, but I want to confirm this first, and I'm going to continue doing the rest with the assumptions I have above until I get a reply or figure something else out.
Thank you for any help that you may provide!
Last edited: