Identifying Free Variables in a Homogeneous Matrix

  • Thread starter Thread starter lom
  • Start date Start date
  • Tags Tags
    Matrix
lom
Messages
29
Reaction score
0
<br /> \begin{pmatrix}<br /> 3 &amp;0 &amp;0 &amp;-1 &amp;0 &amp;0 \\ <br /> 2&amp; 0&amp; 0 &amp; 0 &amp; 0 &amp;-4 \\ <br /> 8&amp;2 &amp;0 &amp;-3 &amp;-1 &amp;0 \\ <br /> 0&amp; 1&amp; 0&amp; -1&amp; 0&amp; 0\\ <br /> 0&amp; 0 &amp;1 &amp;0 &amp;-1 &amp;0 <br /> \end{pmatrix}<br />
i got here 5 equations
and 6 variables

how to know who is the free variable
without making a triangle of zeros
on the bottom
?
 
Physics news on Phys.org
You can't. And there may be more than one free variable. Which variables are free may depend on how your do your row reduction. And the completed row reduction might not come out "triangular".
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top