MHB If A is nnd, then show that I + A is pd

  • Thread starter Thread starter insixyears
  • Start date Start date
  • Tags Tags
    Pd
insixyears
Messages
3
Reaction score
0
nnd = non negative definite matrix
pd = positive definite I'm having a tough time grappling with the concept of pd, psd matrices in general. My understanding basically just boils down to this, basically after multiplying everything out using the matrix formula x'Ax, you will get some sort of polynomial. If you get a polynomial where everything is squared, you're in good shape because it's impossible for the equation to be negative. A question that I have is, what does knowing that a matrix A is psd or pd tell us about the entries of A? Doesn't it only tell us how the entries of A interact (ie, when they are added up, you get something >= 0). If that's true, how would adding the identity matrix give you anymore information about the definiteness of the matrix?Thanks!
 
Physics news on Phys.org
crabchef said:
nnd = non negative definite matrix
pd = positive definite I'm having a tough time grappling with the concept of pd, psd matrices in general. My understanding basically just boils down to this, basically after multiplying everything out using the matrix formula x'Ax, you will get some sort of polynomial. If you get a polynomial where everything is squared, you're in good shape because it's impossible for the equation to be negative. A question that I have is, what does knowing that a matrix A is psd or pd tell us about the entries of A? Doesn't it only tell us how the entries of A interact (ie, when they are added up, you get something >= 0). If that's true, how would adding the identity matrix give you anymore information about the definiteness of the matrix?Thanks!

This is clearly not true. For A to be nonnegative definite, all its entries are nonnegative. What if it has a 0 in any element other than on the main diagonal?
Adding the identity matrix won't change that...
 
crabchef said:
nnd = non negative definite matrix
pd = positive definite I'm having a tough time grappling with the concept of pd, psd matrices in general. My understanding basically just boils down to this, basically after multiplying everything out using the matrix formula x'Ax, you will get some sort of polynomial. If you get a polynomial where everything is squared, you're in good shape because it's impossible for the equation to be negative. A question that I have is, what does knowing that a matrix A is psd or pd tell us about the entries of A? Doesn't it only tell us how the entries of A interact (ie, when they are added up, you get something >= 0). If that's true, how would adding the identity matrix give you anymore information about the definiteness of the matrix?
The definition of nnd is that $x'Ax\geq0$ for every nonzero vector $x$. If that condition holds, then $x'(I+A)x = x'x + x'Ax >0$ (because $x'x>0$), and hence $I+A$ is pd.

Prove It said:
For A to be nonnegative definite, all its entries are nonnegative.
That is not true. The definition of nnd is as given by the OP. It does not imply that all the entries of the matrix are nonnegative.
 
Last edited:
Thanks for the help! As with many problems...AFTER seeing the answer it seems so simple. This gives me one more technique to approach my homework problems, but unfortunately I'm already stuck on the next one (going to keep working on it for a bit longer before I post the question)
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top